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Abstract 

Door-to-door (D2D) ride-hailing services currently dominate the mobility-on-demand (MOD) market, 

but several alternative MOD service types offer operational and societal benefits. Three such MOD services 

include D2D ride-pooling, corner-to-corner (C2C) ride-hailing, and C2C ride-pooling. Ride-pooling 

involves travelers sharing rides with strangers, and C2C service requires travelers to walk a short distance 

to/from a pickup/drop-off location. The goals of this study are two-fold. First, we aim to compare these 

four MOD services in terms of operator costs (e.g., vehicle kilometers per request served) and user costs 

(e.g., assignment time, wait time, walk time, and in-vehicle time). Second, we aim to develop an effective 

and scalable decision policy and solution algorithm for operating a C2C ride-pooling service. Underlying 

the C2C ride-pooling service is a highly dynamic sequential decision problem with an extremely large 

decision space. At each decision epoch, the operator must dynamically assign vehicles to requests, route 

and schedule vehicles, and assign travelers to pickup and drop-off (PUDO) locations. To address this 

problem, in a dynamic stochastic agent-based transportation network simulation environment, we propose 

decomposing the sequential decision problem into a matching, routing, and scheduling subproblem, and a 

PUDO locations selection subproblem. We use geographic, network, vehicle, and passenger information, 

as well as optimization techniques to solve the two subproblems. The computational experiments confirm 

a clear trade-off across the four services in terms of operator costs and user costs. With D2D ride-hailing 

as the baseline, (i) ride-pooling significantly reduces operator costs, while slightly increasing user costs; 

(ii) C2C slightly reduces operator costs while significantly increasing user costs; (iii) combining ride-

pooling and C2C appears to provide additive benefits in terms of operator costs. Moreover, the 

computational results indicate that the proposed decision policy for operating the C2C ride-pooling is highly 

scalable and operationally effective.  

 

Keywords: Shared Mobility; Service Design; Optimization; Algorithms; First-and-last-mile; 

Micromobility 
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1 Introduction 

1.1 Background and Motivation 

Mobility-on-demand (MOD) services, enabled by smartphones and their applications, and offered by 

Transportation Network Companies (TNCs) such as Uber, Lyft, and Didi, emerged over a decade ago. The 

dominant MOD service option offered by TNCs is ride-hailing (also known as ride-sourcing or e-hailing 

without shared rides), where vehicles can only carry one traveler request at a time. Several MOD service 

variants have emerged in recent years that aim to increase sharing and vehicle occupancies relative to ride-

hailing in order to decrease negative externalities from these systems.  

The second most common variant is the shared-ride or ride-pooling MOD service, such as Uber Pool 

and Lyft Line (now Lyft Shared) offered by Uber and Lyft. Ride-pooling MOD services involve pooling 

together sets of traveler requests that have similar, but not necessarily the same, origin and destination 

locations and request times into one vehicle. The envisioned benefits of ride-pooling services include 

decreases in required fleet sizes (i.e., decreases in required drivers active on Uber and Lyft platforms at a 

given instant) and operational miles, potentially lowering the prices service providers can offer customers. 

Service providers also often market ride-pooling as a service option that can reduce congestion, energy 

consumption, greenhouses gases, and local pollutants.  

In conventional ride-hailing and ride-pooling MOD services, service providers offer and operate door-

to-door (D2D) services, meaning that vehicles pick up and drop off travelers at their requested origin and 

destination locations, respectively. However, the need to pick up and drop off every traveler at their 

preferred origin and destination locations may significantly hamper MOD operational efficiency.  

To address the operational inefficiencies associated with D2D MOD services, service providers now 

operate flexible ride-pooling MOD services wherein travelers must walk to pickup (PU) locations from 

their trip origins, and from drop-off (DO) locations to their trip destinations. In this paper, we refer to this 

MOD service as a corner-to-corner (C2C) ride-pooling service. C2C ride-pooling is quite similar to 

historical variants of dial-a-ride and flexible transit services, and several emerging on-demand microtransit 

services that require users to walk to/from their PU/DO locations instead of being served at their doorstep. 

The premise behind C2C MOD services is that having travelers walk to nearby PUDO locations that 

are convenient for non-idle vehicles can increase MOD service fleet productivity measured in terms of 

travelers served per time unit, while also reducing fleet distance per request served and increasing vehicle 

occupancies. However, these operational improvements are likely to come at the cost of inconvenience for 

travelers, in terms of increased walk distances and increased request-to-destination travel times.  

1.2 Research Goals, Problem Overview 

Given this background on MOD services, this paper’s goals are two-fold. First, we aim to 

systematically analyze the trade-offs between operator costs and user costs across four MOD services—

D2D ride-hailing (D2D-RH), C2C ride-hailing (C2C-RH) D2D ride-pooling (D2D-RP), and C2C ride-

pooling (C2C-RP), where every service responds to on-demand requests. Analyzing these four options 

requires decision policies and algorithmic frameworks for operating each MOD service, as well as a 

simulation environment. While the academic literature includes significant research on decision policies 

and solution algorithms for D2D-RH and D2D-RP services, the same is not true for C2C-RH and C2C-RP. 

Hence, the second goal of this paper is to develop a scalable and effective decision policy and algorithmic 

approach for dynamically operating C2C MOD services, particularly C2C-RP. 

Developing a scalable and effective approach for C2C-RP services is a significant modeling and 

algorithmic challenge. The challenge stems from the size of the decision vector/space. A C2C-RP service 
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provider needs to determine PUDO virtual stops for each traveler, while also matching travelers to vehicles, 

sequencing and scheduling PUDOs for each vehicle, and assigning vehicles to transportation network paths. 

Moreover, the fleet operator needs to make these decisions repeatedly in real-time, as new information (i.e., 

new requests and changes in network travel times) enters the system. To address the problem, we propose 

a decision policy that decomposes the full decision problem at each decision epoch into two subproblems 

that we solve sequentially and iteratively. The two subproblems are the PUDO locations selection 

subproblem and the vehicle-traveler matching subproblem, wherein the second subproblem embeds the 

vehicle sequencing and scheduling of traveler PUDOs. Given the decomposed sub-problems, we test 

several decision policies for a C2C-RP service. Specifically, we compare the case where the fleet operator 

assigns travelers to PUDO locations first for each candidate vehicle, then matches travelers to vehicles vs. 

a policy where the operator matches travelers to vehicles first, then assigns PUDO locations for the traveler 

based on the matched vehicle. 

1.3 Terminology and Abbreviations 

Before going any farther, we want to clarify some key terminology and abbreviations that we will use 

throughout the rest of the paper. We use the abbreviation PUDO when referring to pickup and drop-off, 

whereas we will use the abbreviation PU/DO when referring to pickup or drop-off. Additionally, if we are 

only referring to a pickup, we will use the abbreviation PU, and if we are only referring to a drop-off, we 

will use the abbreviation DO. A request is associated with two PUDO locations (or links)—a pickup 

location (or link) and a drop-off location (or link).  

Moreover, we want to differentiate between locations and links where PUDOs occurs. We use the term 

PUDO location when discussing C2C-RP and C2C-RH in general, as in practice vehicles can pick up and 

drop off travelers anywhere (i.e., at nodes, or along links, or in designated PUDO spots). However, we use 

the term PUDO link to be precise in regard to the simulation model functionality in this study, as the 

simulation model allows PUDOs along network links.  

1.4 Paper Outline 

The remainder of this paper is structured as follows. Section 2 reviews the literature related to C2C 

MOD services and delineates the contributions of the current study. Section 3 describes the C2C-RP 

operational problem. Section 4 presents the decision policy and solution algorithm for the C2C-RP 

operational problem. Section 5 describes the simulation environment in which we test the proposed C2C-

RP decision policy and compare the four MOD service options. Section 5 also describes the computational 

experiments, including the performance metrics and scenarios to assess the operator and user costs 

associated with the four MOD service options. Section 6 presents and discusses the results of the 

computational experiments. Section 7 concludes the paper with a summary as well as a discussions of future 

research directions.  

2 Background and Literature Review 

In this section, we present an overview of the existing literature related to C2C-RP. We focus our 

literature review on C2C-RP, as this is the focus of the current paper. We refrain from providing a detailed 

review of D2D-RH and D2D-RP, as there is extensive literature in this area. However, for readers interested 

in D2D-RH and D2D-RP, there are several recent review articles worth mentioning.  

Zardini et al. (2022) present a recent extensive review of automated MOD (AMOD) that covers 

operational-level and planning-level problems related to MOD services with automated vehicles. Many of 

the insights from this review article relate to MOD services without automated vehicles. In addition to 

characterizing different elements of AMOD modeling studies, the paper reviews solutions for matching, 
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routing, and rebalancing for D2D-RH, and these three subproblems plus ride-pooling for D2D-RP. 

Narayanan et al. (2020) provide a review of research on shared autonomous vehicles, which is another name 

for AMOD. Their review is quite broad, covering models of demand, parking, fleet sizing, vehicular traffic, 

matching, repositioning, pricing, and charging for electric vehicles. Mourad et al. (2019) survey shared 

mobility studies and focus on the operational problem. They consider travelers sharing rides with other 

passengers, and with parcels.  

The remainder of this background and literature review section covers mobility services that include 

walking trips in general (Section 2.1), and mobility services with walking legs wherein the fleet operator 

selects PUDO locations for travelers in real-time (Section 2.2). We conclude by delineating the 

contributions of our study (Section 2.3). 

2.1 PUDO Locations Selection 

One of the critical decisions in operating C2C MOD services is where to pick up and drop off travelers. 

PUDO locations selection impacts (i) the distance/time/cost required for a vehicle to serve each request; 

and (ii) each traveler’s walking distance. Thus, the PUDO locations selection problem significantly impacts 

both operator and user costs.  

Several studies develop strategies for selecting PUDO locations in C2C services. Wang et al. (2022) 

categorize these strategies into three approaches: 1) strict meeting points, 2) relaxed meeting points, and 3) 

no meeting points. As the simplest approach, strict meeting points determines a single set of PUDO points 

for each vehicle (Wang et al., 2022). All riders sharing the same vehicle walk from their respective origins 

to one common PU location and from one common DO location to their respective destinations (Aissat and 

Oulamara, 2014; Czioska et al., 2017; Stiglic et al., 2015). This approach entails few stops per vehicle trip 

and thus is convenient for the drivers. In fact, the strict meeting points approach is more common in 

conventional carpooling and ridesharing where the driver has their own trip origin and destination, rather 

than in MOD services with a dedicated driver. While being convenient for drivers, the strict meeting points 

approach limits the potential to match drivers and riders in a region.  

To address the shortcomings associated with the strict meeting points approach, several studies enable 

multiple intermediate PUDO locations on a vehicle’s route, which is the relaxed meeting points approach 

(Wang et al. 2022). The relaxed meeting points approach clusters riders before assigning them a common 

location for PU/DO (Czioska et al., 2019; Martínez et al., 2015) or limits the candidate PUDO locations to 

a small subset of road nodes (Araldo et al., 2019; Gurumurthy and Kockelman, 2022). Studies using the 

relaxed meeting points approach, unlike the fixed meeting points approach, rarely assume that drivers have 

their own destinations (a special case is Miklas-Kalczynska and Kalczynski, 2020), rather, most studies 

focus on C2C-RP MOD services. A recent study by Lotze et al. (2022) is a special case of the relaxed 

meeting points approach, as they attempt to dynamically assign each new request to an existing planned 

vehicle stop. However, if the algorithm does not find a feasible existing PU and/or DO stop for a new 

request, then the algorithm has a vehicle pick up and/or drop off the traveler at the traveler’s origin and/or 

destination.  

Finally, the no meeting points approach does not restrict riders to share PU or DO points with other 

travelers (Wang et al., 2022). Some studies using the no meeting points approach (Balardino and Santos, 

2015; Zheng et al., 2019) propose variants of the shortest covering path problem (SCPP) or generalized 

traveling salesman problem (GTSP) formulations for the carpooling or flex-route transit applications, where 

the selection of PUDO locations is a deterministic problem. Other studies dynamically select the PUDO 

locations for each stochastic request (Fielbaum et al., 2021; Li et al., 2020; Lyu et al., 2019). Given that the 
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approach in our study involves no meeting points and dynamic selection of PUDO locations, we focus the 

remainder of our review on studies that dynamically select PUDO locations without explicit meeting points.  

2.2 Dynamic PUDO Locations Selection 

Dynamic selection of PUDO locations without explicit meeting points theoretically permits better 

solutions in terms of service quality and operational efficiency (Wang et al., 2022) than approaches with 

predetermined or limited meeting points. Table 1 compares C2C MOD studies with dynamic PUDO 

locations selection. 

Most C2C MOD studies focus on ride-pooling since the purpose of incorporating walking access and 

egress trip legs is often the same as incorporating pooled rides—to reduce fleet miles, operational costs, 

congestion, and emissions (Fielbaum et al., 2021; Li et al., 2020; Lyu et al., 2019). However, Martin et al. 

(2021) consider C2C in a ride-hailing service with the objective of minimizing the riders’ travel cost. With 

a fixed vehicle speed, Martin et al. (2021) test the performance of C2C-RH with a 400-meter walk range in 

the Manhattan road network. They also mainly compare static PUDO assignment with dynamic PUDO 

locations selection for C2C-RH and find that the impact on operational efficiency is relatively minor. 

Other studies simulate C2C-RP services on various real-world city networks including Manhattan, 

Shanghai, and Chengdu (Fielbaum et al., 2021; Li et al., 2020; Lyu et al., 2019). These studies all assume 

deterministic link travel times or fixed vehicle speeds (i.e., the vehicles travel the same speed on all links). 

Notably, two studies that do incorporate stochastic travel times in large scale networks—Gurumurthy and 

Kockelman (2022) and Zwick et al. (2021) in POLARIS and MATSim, respectively—use fixed or relaxed 

meeting points approaches. Hence, ours is the first study to incorporate stochastic link travel times (and 

congestible links) in a simulation, where the C2C service does not have fixed meeting points.  

The number of MOD requests for the studies in Table 1 range from 9,000 to 10.7 million. However, 

the hourly average request rates only range from 9,000 to 22,000 requests per hour. Fleet sizes in the 

literature range from 40-13,181. Our study has the longest analysis period of 24 hours, and the number of 

requests and fleet size are consistent with prior research.  

Vehicle capacity ranges from 1-20. As our study is the only study to consider C2C-RP and C2C-RH, 

it is also the only one to consider vehicle capacities of one and greater than one in the same study.  

For maximum walking distance, parameter values range between 300 and 1000 meters. Similar to 

other studies, we vary the parameter between 250 and 1000 meters, to understand its impact on key 

performance metrics.  

For walking speed, every study assumes 5 or 5.04 km per hour. In this study, we consider a walking 

speed of 5 km per hour, but also a ‘walking’ speed of 20 km per hour that is more akin to an electrified bike 

or scooter. We include this parameter to evaluate the benefits of electrified bikes and scooters on system 

performance metrics for C2C-RH and C2C-RP.  

The third to last column in Table 1 refers to whether vehicles wait for travelers at PU locations. There 

are two interrelated aspects here, related to the simulation environment and the fleet’s operational strategy. 

If the simulation does not include stochastic link travel times, then the service provider fully determines 

whether vehicles wait for travelers at PU locations (the second aspect of this service dimension). However, 

if the simulation does include stochasticity, then vehicle waiting is not fully in the operator’s control. As 

ours is the only study with stochastic travel times, it is also the only study where the arrival time of vehicles 

at PU locations is uncertain; hence, vehicles may arrive before requests and have to wait. Of course, this is 

consistent with a real-world MOD service, where travel time is uncertain. Interestingly, Lyu et al. (2019) 

also consider the case where the vehicles wait at PU locations. However, since their model is deterministic 
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in link travel times, they intentionally have vehicles wait for travelers at PU locations. Their model 

explicitly captures the waiting cost for onboard passengers. The other studies do not specifically mention 

the possibility of vehicles waiting for travelers at PU locations (Fielbaum et al., 2021; Li et al., 2020). 

Table 1: Summary of Existing Studies Analyzing C2C MOD Services (with dynamic PUDO locations selection) 
Paper MOD 

Services 

in Study  

Road Network 

& Travel Time 

Avg. Request 

Rate 

(req./hr.) and 

Simulation 

Period 

Fleet Size 

(veh.) and 

Vehicle 

Capacity 

(seats) 

Walk 

Range (m) 

and Walk 

Speed 

(km/h) 

Vehicle 

Waiting 

for 

Request? 

Procedure for 

Identifying PUDO 

Locations  

Candidates  

Selecting PUDO 

Locations and Vehicle-

Request (R-V) 

Matching 

Fielbaum 

et al. 
(2021) 

C2C RP 

D2D RP 

Manhattan, NY 

with fixed link 
travel times 

9,970  

over 1 hour 

2,000- 

3,000 
and 

6-9 

417, 1000 

and  
5 

No Recursive search of 

neighboring PUDO 
locations within 

walk range that 

reduce vehicle 
travel cost 

Joint optimization of 

PUDO locations 
selection and R-V 

matching 

Li et al. 

(2020) 

C2C RP Shanghai, China 

with fixed 
vehicle speeds 

10,000  

over 2 hours 

1,200 

and  
20 

100, 200, 

300, 400, 
500 

and  

5.04 

No All PUDO 

locations within 
walk range 

R-V matching first, 

PUDO locations 
selection second  

Lyu et al. 
(2019) 

C2C RP Chengdu, China 
with fixed 

vehicle speeds 

22,500 
over 28 days 

and 17 hours 
per day 

12,725-
13,181 

 and  
3 

300 
and  

N/A 

Yes, 
planned 

early 
vehicle 

arrivals 

All PUDO 
locations within 

walk range 

PUDO locations 
selection for pooled 

requests first, 
R-V matching second 

Martin et 

al. (2021) 

C2C RH Manhattan, NY 

with fixed 
vehicle speeds 

40–160 total 

requests 

40–400 

and  
1 

400 

and 5.04 

No All nodes from 

request’s origin 
within walk range. 

DO location 

unchanged. 

Dynamic Case: PU 

location selection for 
candidate R-V pairs first, 

R-V matching second. 

 
Static Case: PU location 

selection independent of 

vehicle 

This 

study 

C2C RH 

C2C RP 

D2D RP 
D2D RH 

Bloomington, IL 

with dynamic 

stochastic 
congestion-

dependent link 

travel times 

9,200  

over 24 hours 

1,000–

10,000 

and  
1 (RH),  

4 (RP) 

250, 500, 

750, 1,000 

and 
5, 20 

Yes, 

stemming 

from 
vehicle 

arrival time 

uncertainty 

PUDO links 

selected based on 

walk range and 
vehicle travel 

direction 

Option 1: R-V matching 

first, PUDO locations 

selection for matched R-
V pairs second. 

 

Option 2: PUDO 
locations selection for 

candidate R-V pairs first, 

R-V matching second 

Finally, we want to describe the different decision policies and algorithmic approaches for C2C-RP in 

the literature. Lyu et al. (2019) maintain a waiting queue for unassigned requests. When new requests arrive, 

their approach attempts to sequentially match each new request with unassigned requests already in the 

waiting queue to form companion candidate pairs. Then, they determine the ‘maximum sharing satisfaction 

utility’ set of companion candidate pairs where the PUDO locations of candidate pairs can be pooled 

together in one vehicle. Alternative PUDO locations are determined by finding walkable nodes from each 

request’s origin and destination in the companion pair, and then choosing the best set of PU and DO 

locations that minimize total tour distance. Next, the approach aims to insert additional requests into the 

previously identified best companion pairs. The seat capacity is four in their study, so only two more 

requests can be inserted into the original companion pair. Finally, their approach assigns the closest idle 

vehicle to the first stop in the stop sequence corresponding to the set of least cost requests. A main difference 

between our approach and that in Lyu et al. (2019) is that they do not allow the insertion of new requests 

into a vehicle’s route plan, until the vehicle completes all its current PU and DO tasks. This almost certainly 

limits the operational effectiveness of the proposed decision policy and solution algorithm.  

Li et al. (2020) select PUDO locations for each new request after matching each request to a vehicle. 

Li et al. (2020) sequentially assigns each new request to a vehicle, wherein the algorithm considers the cost 
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of inserting the new request’s origin and destination locations into the planned routes of each vehicle. After 

request-vehicle matching, the algorithm adjusts the traveler’s PUDO locations to minimize the matched 

vehicle’s detour. The approach evaluates all walkable PUDO locations near the request’s origin and 

destination, respectively. Additionally, the approach includes a post-processing stage in which PU and/or 

DO locations of two requests are merged if they are close to each other. These requests are assigned to the 

same vehicle subject to time window constraints and vehicle not waiting for request constraint. 

There are three key differences between our study’s decision policy and solution algorithm compared 

to Li et al. (2020). First, we perform request-vehicle matching using bi-partite matching after batching 

requests together over a time interval. Second, our methodology allows for the flexibility to adjust PUDO 

locations either before or after request-vehicle matching. Third, we shortlist PU/DO candidates for a 

request-vehicle pair based on the vehicle’s planned travel direction, in addition to walk distance restrictions. 

Experiments suggest that this added condition improves operational efficiency and computational run time. 

Fielbaum et al. (2021) batch new requests received between decision epochs and solve an integer-

linear program (ILP) assignment problem that may assign multiple requests to the same vehicle in a single 

decision epoch. They extend the request-vehicle ILP matching algorithm in Alonso-Mora et al. (2017) to 

incorporate the selection of PUDO locations for each request-vehicle match. The extended model and 

algorithm shortlists PUDO candidates for a request-vehicle match by evaluating neighboring network nodes 

around the request’s origin and destination—if a neighboring node can reduce the matching cost for the 

request-vehicle pair it is put on the shortlist. This procedure continues by evaluating the neighbors’ 

neighbors until no remaining PUDO location candidates reduce the total cost of matching. The solution 

approach then jointly optimizes request-vehicle assignment and selection of PUDO locations for each 

request. The joint optimization of an ILP request-vehicle matching with PUDO locations selection is 

computationally intensive, limiting its scalability. Fielbaum et al. (2021) mention that incorporating PUDO 

locations selection increases request-vehicle matching by approximately 10 times.  

Our approach differs from Fielbaum et al. (2021) in several ways. First, we decompose PUDO 

locations selection and request-vehicle matching to decrease computational complexity and increase 

scalability. Our proposed approach also considers the directionality of non-idle vehicles when shortlisting 

PU and DO locations for each request—this is not the case in Fielbaum et al. (2021). Finally, unlike 

Fielbaum et al. (2021), our approach considers the resequencing of all planned PUDO stops assigned to 

each vehicle, after inserting each new request into a vehicle’s planned route, and after choosing each new 

request’s PUDO locations.  

2.3 Contributions 

This paper makes several contributions to the academic literature. The first set of contributions relate 

to the evaluation of C2C-RP against alternative MOD services and the design of C2C-RP services. The 

second set of contributions relates to the decision policy and solution algorithm we develop to solve the 

C2C-RP problem.  

This study compares four MOD services (C2C-RH, C2C-RP, D2D-RH, D2D-RP) in terms of operator 

and user costs. Prior research analyzes at most one pair of these MOD services. Conversely, we 

systematically compare all four services in terms of operator and user costs, under a unified modeling and 

algorithmic framework, and a common simulation environment. Assuming D2D-RH is the baseline service, 

we can isolate the operational benefits (and user costs) stemming from (i) pooling rides and (ii) 

incorporating walking legs. We can also evaluate the synergistic benefits (and costs) between (i) and (ii).  

Moreover, we perform the comparison in a state-of-the-art agent-based transportation system 

simulation model—POLARIS—that captures road network congestion dynamics. This is another 
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contribution of the study. The simulation permits analysis of a severely overlooked problem related to 

operating C2C MOD services, namely, vehicles needing to wait for travelers at PU locations (Wang et al., 

2022). In the real world, and in ABM simulations that capture link travel time stochasticity, it is frequently 

the case that vehicles arrive at PU locations before travelers. This negative outcome significantly impacts 

the efficiency and productivity of vehicles in the fleet. Capturing link travel time uncertainty in the 

simulation environment permits a much more realistic assessment of the benefits and costs of C2C service 

relative to D2D service.  

Our study also evaluates the impacts of maximum walking distance on fleet performance for a dynamic 

C2C-RP service without meeting points. This is an important service design parameter for C2C-RP that 

impacts customer and operator costs. Our study is also the first to consider a ‘walking’ speed in a C2C 

MOD service that is reflective of travelers having access to an electrified scooter or bike.  

Additionally, we propose novel decision policies and algorithmic strategies for C2C-RP that are 

scalable and operationally effective. Ultimately, as described above, the problem of dynamically operating 

a C2C-RP service is a highly complex decision problem, where the enormous size of the decision space for 

even small problem instances essentially precludes elegant models, algorithms, and decision policies, which 

appears to have stymied research related to C2C-RP. This is particularly discouraging given the potential 

of a C2C-RP to meet societal and transportation system goals, such as reducing vehicle miles traveled, 

traffic congestion, energy consumption, and harmful emissions, while providing lower cost (compared to 

D2D-RH) and high-quality mobility. This paper tackles the C2C-RP service problem as the complex set of 

engineering problems that it entails. The proposed solution framework considers the trade-off between 

computational run time and solution quality within a particular decision epoch. We decompose the decision 

problem in each epoch into a subproblem that matches vehicles to travelers, sequences and schedules 

PUDOs for each vehicle, and a second subproblem that assigns travelers to PUDO locations. This 

decomposition permits the use of optimization techniques for the first subproblem, and a flexible solution 

algorithm that explores the solution space for the second subproblem. Moreover, we propose an algorithm 

that efficiently solves these two subproblems sequentially and iteratively.  

Our proposed solution approach includes several important algorithmic contributions. We only allow 

PUDOs on links that are in the planned direction of travel of non-idle vehicles. Links in conflicting 

directions will either never be chosen in the PUDO selection step, or if they are chosen, will likely harm 

the operational efficiency of the fleet. Moreover, like several other studies, our approach decomposes the 

decision problem into the request-vehicle matching subproblem and the PUDO selection problem. 

However, unlike other studies in the literature, our approach allows PUDO selection before or after request-

vehicle matching. This permits the service provider to explicitly trade-off between computational run time 

and solution quality, as selecting PUDOs for candidate request-vehicle matches before the matching step 

improves solution quality but it increases computational run time. Importantly, we also batch requests over 

a given time interval and solve the batched request-vehicle matching problem using the bi-partite 

assignment problem as the engine. Our solution approach leverages the benefits of bi-partite matching (i.e., 

it is highly scalable) while addressing its major limitation for ride-pooling (i.e., it can only assign one 

request per vehicle) by iteratively matching requests to vehicles within one decision epoch, such that 

multiple requests can ultimately be assigned to one vehicle in each decision epoch.  
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3 Problem Description 

3.1 Nomenclature 

𝑅: Set of all requests, indexed by 𝑟 ∈ 𝑅 

𝑉: Set of all vehicles, indexed by 𝑣 ∈ 𝑉 

𝐿: Set of all links in the road network, indexed by 𝑙 ∈ 𝐿 

𝑇: Set of time steps in simulation, indexed by 𝜏 ∈ 𝑇 

Δ: Time between decision epochs 

(𝑟, 𝑣): Request 𝑟, Vehicle 𝑣 pair (match or match candidate) 

𝑜𝑟: Original PU link of request 𝑟  [(x,y) coordinate representing average location along the link] 

𝑑𝑟: Original DO link of request 𝑟  [(x,y) coordinate] 

𝑜𝑟
′ : Adjusted PU link of request 𝑟  [(x,y) coordinate] 

𝑑𝑟
′ : Adjusted DO link of request 𝑟  [(x,y) coordinate] 

𝐿𝑜𝑟
: Set of PU links that are within walk range from 𝑜𝑟, indexed by 𝑜𝑟

′ ∈ 𝐿𝑜𝑟
 

𝐿𝑑𝑟
: Set of DO links that are within walk of 𝑑𝑟, indexed by 𝑑𝑟

′ ∈ 𝐿𝑑𝑟
  

𝜏𝑟: Request initiation time of request 𝑟  [Simulation time (sec.)] 

𝑉𝑟: Set of feasible candidate vehicles for unassigned request 𝑟 

𝑅𝑣: Set of requests in 𝑣’s PUDO sequence (Empty for idle vehicles) 

𝑐𝑣𝑒ℎ: Vehicle capacity  [Seats] 

𝑘𝑣𝑒ℎ: Maximum number of candidate vehicles for each unassigned request 

𝑘𝑣𝑒ℎ
𝑖𝑑𝑙𝑒: Minimum number of candidate idle vehicles for each unassigned request 

𝜃𝑚𝑎𝑥: 
Maximum angle between a request’s Euclidean path vector and a vehicle’s average future path vector (see 

Figure 2) 

𝐷𝑑𝑖𝑟
𝑚𝑎𝑥: 

Maximum remaining distance for a candidate vehicle to complete its current tour so as to be exempt from 

directionality and detour compatibility constraints  [Meters] 

𝐷𝑟𝑒𝑣(𝑟, 𝑣): 
Euclidean distance between vehicle 𝑣’s current link and the projection of 𝑜𝑟 onto the average future path of 

vehicle 𝑣  [Meters] 

𝐷𝑟𝑒𝑣
𝑚𝑎𝑥: 

Maximum distance a vehicle can travel in a direction opposite to vehicle’s average future path to pick up a 

new request (see Figure 3)  [Meters] 

𝐷𝑑𝑒𝑡𝑜𝑢𝑟(𝑟, 𝑣): Euclidean detour distance from vehicle 𝑣’s current average path to 𝑜𝑟  (see Figure 3)  [Meters] 

𝐷𝑑𝑒𝑡𝑜𝑢𝑟
𝑚𝑎𝑥 : Maximum Euclidean detour distance from vehicle 𝑣’s current average path to 𝑜𝑟  (see Figure 3)  [Meters] 

𝜏𝑟,𝑣
𝑃𝑈: Time at which request 𝑟 gets picked up by vehicle 𝑣 at the finalized PU link [Simulation time (sec.)] 

𝜏𝑟,𝑣
𝐷𝑂: Time at which request 𝑟 gets dropped off by vehicle 𝑣 at the finalized DO link [Simulation time (sec.)] 

𝑡𝑟,𝑣
𝑤 : Total wait time for request 𝑟 to be picked up by vehicle 𝑣 [Duration (sec.)] 

𝑡𝑚𝑎𝑥
𝑤 : Maximum PU wait time for a request [Duration (sec.)] 

𝑡(𝑜𝑟 , 𝑑𝑟): 
Approximate direct travel time from 𝑜𝑟 to 𝑑𝑟, calculated based on Euclidean distance and average hourly 

speeds in the zones associated with 𝑜𝑟 and 𝑑𝑟 during time of matching [Duration (sec.)] 

𝑡𝑟,𝑣
𝑖𝑣 : 

In-vehicle travel time (IVTT) for request 𝑟 in vehicle 𝑣 from the finalized PU link location to finalized DO 

link location  [Duration (sec.)] 

𝑡𝑟,𝑣
𝑖𝑣𝑚𝑎𝑥: 

Maximum IVTT for request 𝑟 in vehicle 𝑣 from the finalized PU link location to finalized DO link location 

(initially 𝑜𝑟 and 𝑑𝑟, respectively) [Duration (sec.)] 

𝑡𝑚𝑎𝑥𝑎𝑏𝑠

𝑖𝑣 : Maximum allowable increase in IVTT for any request [Duration (sec.)] 

𝑡𝑚𝑎𝑥𝑟𝑒𝑙

𝑖𝑣 : Maximum allowable increase in IVTT relative to a request’s direct travel time [%] 

𝑡𝑆𝑟,𝑣
: Time it takes for vehicle 𝑣 to complete PUDO sequence 𝑆𝑟,𝑣 after insertion of request 𝑟 [Duration (sec.)] 

𝐶𝑣,𝑟(𝑜𝑟,𝑑𝑟)
: Cost of inserting request 𝑟 into vehicle 𝑣 with PU at 𝑜𝑟 and DO at 𝑑𝑟 [Duration (sec.)] 

𝑤𝑤𝑡: Weight parameter for wait time in insertion cost function 

𝑤𝑖𝑣𝑡𝑡: Weight parameter for IVTT in insertion cost function 

𝐷𝑤𝑎𝑙𝑘 
𝑃𝑈 , 𝐷𝑤𝑎𝑙𝑘

𝐷𝑂 : Maximum effective walk ranges from 𝑜𝑟 to 𝑜𝑟
′  and 𝑑𝑟

′  to 𝑑𝑟, respectively  [Meters] 

𝐷𝑤𝑎𝑙𝑘
𝑚𝑎𝑥 : Maximum walk range for PU leg, and Maximum walk range for DO leg [Meters] 

𝑠𝑤: Average walk speed [Kilometers per hour] 

𝜃𝑏𝑢𝑓: 
The buffer angle around coordinate-axes to shortlist candidate PUDO links based on their link bearings and 

the vehicle’s travel direction (Section 4.3.2)  [Degrees] 

𝑘𝑃𝑈𝐷𝑂: 
Maximum number of candidate feasible PU/DO links to be chosen for each new (𝑟, 𝑣) match or match 

candidate for PUDO links adjustment 

𝛾𝐶2𝐶: 

Boolean parameter to set sequence of PUDO links adjustment and request-vehicle matching. TRUE indicates 

PUDO links are adjusted before matching stage. FALSE indicates PUDO links are adjusted after matching 

stage 
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3.2 Problem Statement 

In this section we describe the C2C-RP problem. We model a central controller operating a fleet of 

homogeneous vehicles 𝑉 = {1,2, . . , 𝑣, … |𝑉|}. These vehicles provide service to a set of requests 𝑅 =
{1,2, . . , 𝑟, … |𝑅|} over the analysis/simulation period 𝑇 = {1,2, . . , 𝜏, … |𝑇|}, where each request 𝑟 ∈ 𝑅 has 

an origin 𝑜𝑟  and a destination 𝑑𝑟  within a geographical service region or network. All requests have a 

walking speed of 𝑠𝑤. Each request, 𝑟, also has a request initiation time 𝜏𝑟, as well as set of feasible PU 

locations 𝐿𝑜𝑟
 and feasible DO locations 𝐿𝑑𝑟

. Most importantly, the 𝜏𝑟  values for each request 𝑟  are 

unknown to the fleet controller before 𝜏𝑟. Similarly, the fleet controller only knows 𝐿𝑜𝑟
 and 𝐿𝑑𝑟

 for each 

request 𝑟 at 𝜏𝑟. Hence, the fleet controller faces a stochastic dynamic decision problem.  

The fleet controller’s problem is multi-objective; the objectives include maximizing requests served, 

minimizing request in-system time, and minimizing total fleet miles. To meet its objectives, the fleet 

controller must dynamically assign or match requests to vehicles, where (𝑟, 𝑣) denotes a request-vehicle 

match or a candidate request-vehicle match, and 𝑋𝑣,𝑟 is the binary decision variable equal to one if (𝑟, 𝑣) 

is a match. In this study, we batch requests that arrive every Δ seconds, which is the time between decision 

epochs. After matching a request 𝑟 to a vehicle 𝑣, the fleet controller cannot later reject the request 𝑟 or 

serve it with another vehicle. Embedded inside the request-vehicle matching subproblem is the sequencing 

and scheduling of traveller PUs and DOs. Moreover, the fleet controller must determine PUDO locations 

for requests, where 𝑜𝑟
′ ∈ 𝐿𝑜𝑟

 and 𝑑𝑟
′ ∈ 𝐿𝑑𝑟

 denote the selected PU and DO locations of request 𝑟 , 

respectively. In this study, PUDO locations are at the upstream node of each link. Therefore, the fleet 

controller must determine PUDO links, rather than a generic PUDO location. 

The fleet controller also faces several hard constraints. The first is the vehicle capacity constraint, 

where 𝑐𝑣𝑒ℎ is the parameter representing vehicle capacity. Other constraints and their associated parameters 

include maximum PU wait time for requests (𝑡𝑚𝑎𝑥
𝑤 ), maximum in-vehicle travel time detour (𝑡𝑚𝑎𝑥𝑎𝑏𝑠

𝑖𝑣 ) and 

maximum percent increase in in-vehicle travel time relative to the request’s shortest path travel time 

(𝑡𝑚𝑎𝑥𝑟𝑒𝑙
𝑖𝑣 ). We also enforce a maximum walk distance for both the access and the egress walking legs 

(𝐷𝑤𝑎𝑙𝑘
𝑚𝑎𝑥 ). We also enforce a constraint on non-idle vehicles that they can only travel in the opposite direction 

of their planned route for a given maximum distance (𝐷𝑟𝑒𝑣
𝑚𝑎𝑥). 

4 Solution Methodology 

4.1 Overall Flow and Sequence  

Figure 1 shows the flowchart of the decision policy and iterative solution algorithm at each decision 

epoch for the C2C-RP problem. The time between decision epochs is Δ, a fixed input parameter.  The inputs 

at each decision epoch are the current status of requests, vehicles, and the network inclusive of link, node, 

and zonal information. The outputs at each decision epoch are the new assignments of requests to vehicles, 

the unmatched requests, the updated PUDO links for every matched request, and the updated vehicle routes 

and vehicle schedules. Each iteration of each decision epoch involves 3 main stages: (i) finding feasible 

(𝑟, 𝑣) match candidates, (ii) optimizing request-vehicle matches, and (iii) adjusting PUDO links. The 

following three subsections describe these three main stages in detail.  

However, we first want to motivate and describe the iterative nature of our decision policy and solution 

algorithm. The algorithm is iterative because we use bi-partite matching as the engine of the optimal 

request-vehicle matching module, similar to Hyland and Mahmassani  (2020), Sarma et al. (2020), and 

Simonetto et al. (2019). Bi-partite matching is highly efficient because dropping the integrality constraint 

in the math program and using an exact solution method still returns binary solutions. Unfortunately, this 



 

12 

 

property, stemming from the constraint matrix being totally unimodular, comes at a cost—a vehicle can 

only be matched to at most one request per call to optimal R-V matching module. To partially address the 

shortcoming of the bi-partite matching approach, we call the bi-partite matching module multiple times in 

each decision epoch. After solving one instance of the bi-partite matching problem, we then (i) insert the 

PU and DO links of the newly assigned requests into their matched vehicles and (ii) find a new set of 

feasible match candidates composed of remaining unassigned requests and vehicles with updated planned 

routes and schedule. Next, we call the bi-partite matching algorithm again. This iterative process terminates 

at each decision epoch when there are no feasible request-vehicle matches remaining. 

We also want to note that we test two different decision policies, wherein the only difference is whether 

we adjust PUDO links for candidate request-vehicle matches before optimal request-vehicle matching, or 

we adjust PUDO links for finalized request-vehicle matches after optimal matching. If the 𝛾𝐶2𝐶 parameter 

is equal to one, the algorithm adjusts PUDO links before matching.  

 
Figure 1. Overview of C2C-RP decision policy and solution algorithm (R-V = Request-Vehicle) 

4.2 Finding Feasible Request-Vehicle Match Candidates  

Ultimately, the C2C-RP sequential decision problem requires matching requests to vehicles and 

choosing PUDO links for each request. As a preliminary step, we first determine feasible vehicle candidates 

𝑉𝑟 for each unassigned request 𝑟 at the beginning of each iteration of the solution algorithm.  

We want to add a vehicle 𝑣  to a request 𝑟 ’s feasible candidate vehicle set 𝑉𝑟  if it passes all 

directionality related checks and if inserting request 𝑟 into the PUDO sequence of vehicle 𝑣 does not violate 

time window constraints of 𝑟 or any other requests that are already present in 𝑣’s PUDO sequence. We also 

want to have at most 𝑘𝑣𝑒ℎ feasible candidate vehicles for each request, out of which we also want 𝑘𝑣𝑒ℎ
𝑖𝑑𝑙𝑒 

nearby idle vehicles. We include both idle and non-idle vehicles in each request’s candidate vehicle set. 𝑉𝑟, 

to improve fleet utilization.  
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Algorithm 1 describes the overall procedure for finding feasible vehicle candidates, for a single 

unassigned request. The solution approach repeats Algorithm 1 for each unassigned request at the beginning 

of each iteration of the iterative optimal matching procedure. Importantly, as we determine candidate 

vehicles for each request independently, we can easily parallelize across requests.  

The following subsections detail the requirements each candidate vehicle must meet to be a feasible 

match candidate for an unassigned request. These requirements relate to the directionality of vehicle and 

request travel, the maximum detour for each new request and the requests inside each non-idle vehicle, and 

time-window constraints. Moreover, in order to properly determine whether a request-vehicle pair meets 

the maximum detour and time window requirements, it is necessary to determine the optimal sequence and 

schedule of traveler PUDOs for a given vehicle (considering each new potential request).  

Algorithm 1 – Finding feasible vehicle candidates for unassigned request 𝑟  

 

 

 

Input: Set of Vehicles 𝑉, Unassigned request 𝑟 

Output: Set of feasible vehicles for request 𝑟, 𝑽𝒓;  
Optimal PUDO sequence for all requests in 𝑣, including new request 𝑟, for all vehicles 𝑣 ∈ 𝑉𝑟 , 𝑺𝒓,𝒗

∗ ;  

Cost of inserting 𝑟 into each vehicle 𝑣 ∈ 𝑉𝑟 , 𝑪𝒗,𝒓(𝒐𝒓,𝒅𝒓)
  

Procedure: 

𝑉𝑟 =  ∅  

𝑘 =  0  

Find 𝑘𝑣𝑒ℎ
𝑖𝑑𝑙𝑒  idle vehicles near request 𝑟 and store in set 𝑉𝑟

𝑖𝑑𝑙𝑒  

𝑉𝑟 = 𝑉𝑟 ∪ 𝑉𝑟
𝑖𝑑𝑙𝑒   

𝑘 = 𝑛(𝑉𝑟)  

Let 𝑉𝑟
𝑜𝑡ℎ𝑒𝑟  be the set of all other available vehicles (idle/non-idle with capacity available) near request 𝑟 within 

the 𝑡𝑚𝑎𝑥
𝑤  time range. 

for each 𝑣 ∈ 𝑉𝑟
𝑜𝑡ℎ𝑒𝑟  do 

 if 𝑘 == 𝑘𝑣𝑒ℎ then 

  break 

 end if 

if 𝑣 is idle and 𝑣 ∉ 𝑉𝑟  then 

  𝑉𝑟 = 𝑉𝑟 ∪ 𝑣  

  𝑘 =  𝑘 + 1  

  continue 

 end if 

 else 

  Check direction and detour compatibility for 𝑟 with non-idle vehicle 𝑣 (Algorithm 2) 

  if TRUE then 

   𝑆𝑟,𝑣
∗  = Find optimal PUDO sequence after inserting 𝑟 into 𝑣’s PUDO sequence (Algorithm 3) 

   Evaluate time-window constraints based on 𝑆𝑟,𝑣
∗  (Section 4.2.3) 

   if TRUE then 

    Calculate insertion cost based on 𝑆𝑟,𝑣
∗  (Section 4.2.4) 

    𝑉𝑟 = 𝑉𝑟 ∪ 𝑣  

    𝑘 =  𝑘 + 1 

   end if     

  end if 

 end else 

end for 

return 𝑉𝑟; 𝑆𝑟,𝑣
∗  and 𝐶𝑣,𝑟(𝑜𝑟,𝑑𝑟)

 ∀𝑣 ∈ 𝑉𝑟 

 

4.2.1 Direction and Vehicle Detour Checks 

This step involves checking the direction compatibility and vehicle path detour constraints for 

matching a new request 𝑟 with a non-idle vehicle 𝑣 that has capacity available to serve the new request. A 
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vehicle is considered non-idle if it has a non-empty PUDO sequence due to unserved requests matched to 

it either from a previous decision epoch or from a previous iteration of the optimal matching procedure in 

the same decision epoch. The procedure to evaluate direction and detour compatibility of a candidate (𝑟, 𝑣) 

pair is described in Algorithm 2. Figure 2 and Figure 3 provide illustrations of the procedure. Direction and 

vehicle detour constraints are not evaluated for a non-idle vehicle if it is close to completing its current 

PUDO sequence (Based on the 𝐷𝑑𝑖𝑟
𝑚𝑎𝑥 parameter). Further description of this step is added in Appendix A. 

Algorithm 2 – Evaluating direction and detour compatibility of request 𝒓 with non-idle vehicle 𝒗 

 

 

 

Input: Unassigned request 𝑟, Candidate non-idle vehicle 𝑣 

Output: Direction Compatibility TRUE/FALSE  

Procedure: 

Calculate 𝐷𝑣  – The remaining distance in vehicle 𝑣’s current tour (PUDO sequence) 

if 𝐷𝑣 ≤ 𝐷𝑑𝑖𝑟
𝑚𝑎𝑥  then 

 return TRUE 

end if 

Calculate angle θ between vectors representing average future path of vehicle 𝑣 and Euclidean path between 𝑜𝑟 

and 𝑑𝑟 (See Figure 2 and Appendix A for description) 

if θ > θ𝑚𝑎𝑥 then 

 return FALSE 

end if 

Calculate 𝑢 parameter value (Eqn. 𝐴2, Figure 3, Appendix A) 

if 𝑢 >  1 then 

 return TRUE 

end if 

if 𝑢 <  0 then 

 𝑣 needs to travel in reverse direction 

 Calculate 𝐷𝑟𝑒𝑣(𝑟. 𝑣) (Equation 𝐴3, Figure 3, Appendix A) 

 if 𝐷𝑟𝑒𝑣(𝑟. 𝑣) > 𝐷𝑟𝑒𝑣
𝑚𝑎𝑥  then 

  return FALSE 

 end if 

else if 𝑢 ≤  1 then 

 Calculate 𝐷𝑑𝑒𝑡𝑜𝑢𝑟(𝑟, 𝑣) (Equation 𝐴4, Figure 3, Appendix A) 

 if 𝐷𝑑𝑒𝑡𝑜𝑢𝑟(𝑟, 𝑣) ≤ 𝐷𝑑𝑒𝑡𝑜𝑢𝑟
𝑚𝑎𝑥  then 

  return FALSE 

 end if 

end if 

return TRUE 

 

 
Figure 2. Directionality check for finding feasible request-vehicle pairs. 
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Figure 3. Vehicle path detour check for finding feasible request-vehicle pairs, considering (a) PU travel 

direction threshold and (b) PU travel detour threshold. 

4.2.2 Finding Optimal PUDO Sequence after Insertion  

This step involves finding the optimal order of PUDOs after the new unmatched request is inserted 

into each candidate vehicle obtained in the previous stage. The insertion location and the revised optimal 

PUDO sequence is found using a greedy algorithm based on R-tree similar to Gurumurthy and Kockelman 

(2022). The procedure is described in Algorithm 3 and illustrated in Figure 4.  

Algorithm 3 – Find optimal PUDO sequence after inserting request 𝒓 into (candidate) vehicle 𝒗 

 

 

 

 

 

 

Input: Unassigned request 𝑟, Candidate vehicle 𝑣 

Output: Optimal PUDO Sequence 𝑆𝑟,𝑣
∗ , Time to complete sequence 𝑡𝑆𝑟,𝑣

∗  

Procedure: 

Insert 𝑣’s current link location coordinates into R-tree 

Insert coordinates of 𝑣’s current PUDO links into R-tree 

Insert 𝑜𝑟 and 𝑑𝑟 into R-tree 

Let 𝑥𝑣 be the current link location coordinates of 𝑣 

Let 𝑆𝑟,𝑣
∗  be an empty FIFO queue denoting the optimal PUDO sequence after inserting 𝑟 into 𝑣 

while R-tree is not empty do 

 𝑦𝑣 = Query from R-tree the nearest location to 𝑥𝑣 that satisfies precedence constraints 

 Push 𝑦𝑣 to 𝑆𝑟,𝑣
∗  

 Delete 𝑦𝑣 from R-tree 

 𝑥𝑣 = 𝑦𝑣  

end while 

return 𝑆𝑟,𝑣
∗  , 𝑡𝑆𝑟,𝑣

∗  

 

 
Figure 4. R Tree Query to find optimal PUDO sequence: (a) PUDO Sequencing and (b) Updated Path 
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4.2.3 Evaluation of Time-Window Constraints 

In this step, time window constraints are checked for each request (new and previously assigned) in 

the revised PUDO sequence obtained from Algorithm 3. Starting from the vehicle’s current link location 

and the current simulation time, we estimate arrival times at each PUDO link using a Euclidean distance 

approximation for each trip leg in the candidate vehicle’s revised PUDO sequence. We use the average of 

hourly zonal speeds at the origin and destination zones of each trip leg in the tour (at the current simulation 

time) to estimate the arrival times at each PUDO link. The subroutine checks the following two time 

window constraints for all requests in the revised PUDO sequence for each (𝑟, 𝑣) match candidate: 

1. Latest PU time constraint - The latest PU time constraint mandates that the vehicle arrival time at the 

PU link for any request must be no later than the latest allowable PU time of the request corresponding 

to that PU link. The PU link is assumed to be the origin link for the new request that is inserted into the 

candidate vehicle (before PUDO links adjustment). For requests that have already been assigned to the 

vehicle, PU links in the PUDO sequence could either be their origin link or an adjusted origin based on 

the decision made in Section 4.3 while matching the request to the vehicle. The latest allowable PU 

time of a request is the request time plus the value of the 𝑡𝑚𝑎𝑥
𝑤  parameter. The constraint is expressed 

in Eqn. 1 and Eqn. 2. 

𝑡𝑟,𝑣
𝑤 = τ𝑟,𝑣

𝑃𝑈 − τ𝑟 (1) 

 
𝑡𝑟,𝑣

𝑤 ≤ 𝑡𝑚𝑎𝑥
𝑤 (2) 

 

 

2. Maximum in-vehicle travel time delay constraint – This constraint mandates that the in-vehicle travel 

time for each request in the revised PUDO sequence (both previous assigned and new request) from 

PU time to DO time should not be more than a delay threshold. The subroutine includes two delay 

thresholds, one is an absolute delay value, and the other is a relative delay value. The constraint is 

expressed in Eqn.3 to Eqn. 5.  

𝑡𝑟,𝑣
𝑖𝑣 = τ𝑟,𝑣

𝐷𝑂 − τ𝑟,𝑣
𝑃𝑈 (3) 

𝑡𝑚𝑎𝑥
𝑖𝑣 = 𝑚𝑖𝑛(𝑡(𝑜𝑟, 𝑑𝑟) + 𝑡𝑚𝑎𝑥𝑎𝑏𝑠

𝑖𝑣  , 𝑡(𝑜𝑟, 𝑑𝑟) × [1 + 𝑡𝑚𝑎𝑥𝑟𝑒𝑙
𝑖𝑣 ]) (4) 

𝑡𝑟,𝑣
𝑖𝑣 ≤ 𝑡𝑚𝑎𝑥

𝑖𝑣   (5) 

Euclidean distance along with the average zonal speed at the origin and destination of the request at 

the time of matching are used to approximate the direct automobile travel time. (𝑟, 𝑣) match candidates that 

fail to meet either of the time window constraints after inserting the new request are discarded in this step. 

4.2.4 Insertion Cost Calculation for Feasible Candidates 

In this step, the cost of adding the new request to a candidate vehicle’s tour is calculated for each 

feasible (𝑟, 𝑣) match candidate that fulfilled all time window constraints, and directionality and detour 

related constraints listed in the previous steps. We use the cost associated with each (𝑟, 𝑣) match candidate 

in the optimal matching stage (described in Section 4.4). The insertion cost is calculated as a factor of 

change in total request wait time and in-vehicle travel time for all requests associated with the candidate 

vehicle based on the revised optimal PUDO sequence obtained upon inserting the new request into the 

candidate vehicle. This is expressed in the following equation: 

𝐶𝑣,𝑟(𝑜𝑟,𝑑𝑟)
= 𝑤𝑤𝑡 ∗ 𝑡𝑟,𝑣

𝑤 + 𝑤𝑖𝑣𝑡𝑡 ∗ (𝑡𝑟,𝑣
𝑖𝑣 − 𝑡(𝑜𝑟 , 𝑑𝑟)) + ∑ [𝑤𝑤𝑡 ∗ Δ𝑡𝑟′,𝑣

𝑤 + 𝑤𝑖𝑣𝑡𝑡 ∗ Δ𝑡𝑟′,𝑣
𝑖𝑣 ]

∀𝑟′∈𝑅𝑣

(6) 

The first term in the expression represents the PU wait time for the new request 𝑟 if matched with 

vehicle 𝑣. The second term represents the increase in in-vehicle travel time for the new request 𝑟 based on 
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match candidate (𝑟, 𝑣) compared to the direct travel time between the request origin and destination if the 

person chose to drive alone instead of choosing a C2C-RP service. The terms in the expression after  

represent the change in wait times and in-vehicle travel times for all other requests that are in vehicle 𝑣’s 

PUDO sequence during the time of matching other than the newly inserted request 𝑟.  

4.3 PUDO Links Adjustment 

As the name suggests, the PUDO links adjustment subroutine, involves selecting PU and DO links for 

a request-vehicle match or a candidate request-vehicle match, depending on whether the PUDO links 

adjustment subroutine occurs before ( 𝛾𝐶2𝐶 = 1 − 𝑇𝑅𝑈𝐸)  or after ( 𝛾𝐶2𝐶 = 0 − 𝐹𝐴𝐿𝑆𝐸 ) the optimal 

request-vehicle matching subroutine. The purpose of the PUDO links adjustment subroutine is to decrease 

vehicle detours and detours for in-vehicle travelers. Figure 5 displays an overview of the PUDO links 

adjustment subroutine for a request-vehicle. The following five subsections describe the components of the 

subroutine in more detail.  

As a small note, the subroutine does not consider very short trips, i.e., trips with a trip origin to 

destination Euclidean distance less than the total maximum walking range (2 ⋅ 𝐷𝑤𝑎𝑙𝑘
𝑚𝑎𝑥 ). Additionally, the 

PUDO links adjustment procedure sequentially adjusts PU links and then DO links for a request-vehicle 

pair.  

 
Figure 5. Overview of PUDO links adjustment procedure (Repeated sequentially for PU link adjustment and 

DO link adjustment) 

4.3.1 Walk Range Calculation 

The walk range calculation subroutine determines the maximum distance a traveler can walk to PU 

links from their trip origin (𝐷𝑤𝑎𝑙𝑘
𝑃𝑈 ) and from DO links to their destinations (𝐷𝑤𝑎𝑙𝑘

𝐷𝑂 ), respectively, for a given 

request-vehicle pair. While we have a hard upper-bound for the maximum walk distance to PU links and 

from DO links (𝐷𝑤𝑎𝑙𝑘
𝑚𝑎𝑥 ) to prevent travelers from having to walk long distances, there is another important 

consideration when considering PU links for a request-vehicle pair. This consideration is how far away the 
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vehicle is from the request origin location at the current simulation time for a request-vehicle pair. If the 

vehicle is very close to the request origin, then ‘allowing’ the request to walk 300-500 meters to a PU 

location would almost certainly require the vehicle to wait for the request at the PU location for several 

minutes. Having vehicles, particularly non-idle vehicles, wait at PU locations for travelers to arrive via 

walking can significantly reduce the efficiency (and therefore productivity) of the vehicle fleet. Although 

not captured in the decision model or simulation environment, having vehicles wait at PU locations can 

also negatively impact traffic flow on the PU link.  

The walk range for DO links is always 𝐷𝑤𝑎𝑙𝑘
𝑚𝑎𝑥  because a vehicle will never need to wait for a request 

after dropping them off.  

𝐷𝑤𝑎𝑙𝑘
𝐷𝑂 = 𝐷𝑤𝑎𝑙𝑘

𝑚𝑎𝑥 (7) 

The estimated PU walk range for a new request 𝐷𝑤𝑎𝑙𝑘
𝑃𝑈  depends on the (i) initial distance between the 

request origin link and the vehicle’s current link, (ii) the average walk speed, and (iii) the average vehicle 

speed during the matching time step. The initial distance between the request origin and the vehicle’s 

current position is approximated using Euclidean distance. Average walk speed (𝑠𝑤) is an input parameter. 

The average vehicle speed (𝑠𝑣) is approximated as the average of the zonal speeds at the request origin and 

the current vehicle link at the current simulation time. 

Figure 6a illustrates the approach used to estimate the PU walk range for the new request. The 

Euclidean path assumption between the request origin and the vehicle’s current link at the current decision 

epoch is made irrespective of the PUDO sequence of the vehicle. We make this assumption so as not to 

over-estimate the initial distance of separation between the request origin and vehicle position, and hence 

minimize vehicle wait time at the adjusted PU link by not setting a high value for 𝐷𝑤𝑎𝑙𝑘
𝑃𝑈 . Based on this 

assumption, the following equation describes the initial Euclidean distance between the vehicle position 

and the request origin (𝐷): 

𝐷 = 𝑠𝑤𝑡 + 𝑠𝑣𝑡 

where 𝑡 is the approximate time that the request and vehicle will occupy the same point in Euclidean space 

if they were to travel directly toward each other. From the above equation, 𝑠𝑤𝑡 is the walk range of the 

request such that the vehicle does not have to wait at the adjusted PU link for the request to arrive. 

Rearranging the above equation to solve for 𝑡 yields the following: 

𝑡 =
𝐷

𝑠𝑣 + 𝑠𝑤

(8) 

Therefore, the PU walk range for the new request is obtained as follows: 

𝐷𝑤𝑎𝑙𝑘
𝑃𝑈 = 𝑠𝑤𝑡 =

𝐷 ⋅ 𝑠𝑤

𝑠𝑣 + 𝑠𝑤

(9) 

PU walk range is capped at a maximum value of 𝐷𝑤𝑎𝑙𝑘
𝑚𝑎𝑥  set as an input parameter. Therefore, the 

effective maximum PU walk range for a request in a request-vehicle pair: 

𝐷𝑤𝑎𝑙𝑘
𝑃𝑈 = 𝑚𝑖𝑛(𝐷𝑤𝑎𝑙𝑘

𝑃𝑈 , 𝐷𝑤𝑎𝑙𝑘
𝑚𝑎𝑥 ) (10) 

4.3.1 Walk Range-based PU/DO Link Elimination 

The walk range-based PU/DO link elimination subroutine is the first among several PU/DO link 

elimination subroutines. The initial set of PU and DO link candidates for each (potential) request-vehicle 

match is the set of all walkable links in the network. The link elimination subroutines remove links from 

this set for each request-vehicle pair.  
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Figure 6. PU/DO Links Adjustment: (a) determining the maximum walk range for PUs, (b) eliminating links 

considering walk range, (c) eliminating links based on their bearing and the vehicle’s current planned path, 

(d) determining 𝒌𝑷𝑼𝑫𝑶 candidate links nearest to the vehicle path when the request origin/destination is 

within the bounding box, and (e) choosing a pair of PU and DO links that minimize cost 

Figure 6b displays the subroutine. The process applies to both PU locations and DO locations, so we 

will only describe the process for PU locations. Prior to the simulation (i.e., offline), we create one-Origin 

to many-destination Dijkstra trees for every walk link in the network. The Dijkstra trees only extend from 

each link to the links within 𝐷𝑤𝑎𝑙𝑘
𝑚𝑎𝑥 . Given the PU walk range (𝐷𝑤𝑎𝑙𝑘

𝑃𝑈 ) for a request-vehicle pair determined 

in the walk range calculation subroutine, the walk range-based PU/DO link elimination subroutine 

eliminates all links from the request origin link’s Dijkstra walk tree that are not within 𝐷𝑤𝑎𝑙𝑘
𝑃𝑈 . 

4.3.2 Link Bearing-based PU/DO Link Elimination 

The link bearing-based PU/DO link elimination subroutine further eliminates PU and DO link 

candidates for a request-vehicle pair. Figure 6c displays this link elimination subroutine. The overall 

solution algorithm does not call this link elimination subroutine for the new request’s DO location if the 
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request’s destination would be the vehicle’s last planned stop at the current iteration of the current decision 

epoch.  

The link bearing-based PU/DO link elimination subroutine considers the future direction of travel of 

the vehicle after picking up or dropping off a new request. The future travel direction of the vehicle is 

obtained by measuring the bearing of the vector connecting the new request’s link (origin 𝑜𝑟 for PU link 

adjustment and destination 𝑑𝑟  for DO link adjustment) and the matched vehicle’s preceding stop. The 

subroutine classifies the vector into one of 4 directional quadrants based on its relative direction with respect 

to the North-South and East-West direction axes. Based on this classification, the subroutine eliminates 

links that do not have a bearing within the same directional quadrant as the future vehicle path, plus a 

bearing buffer of θ𝑏𝑢𝑓 in the upper and lower bounds of the quadrant. 

4.3.3 Proximity-based Candidate Link Selection 

The proximity-based candidate link selection subroutine involves selecting up to 𝑘𝑃𝑈𝐷𝑂  feasible 

candidate PU links for a request’s origin and up to 𝑘𝑃𝑈𝐷𝑂  feasible candidate DO links for a request’s 

destination. For each origin and destination, the available  𝑘𝑃𝑈𝐷𝑂  are those links remaining after walk 

range-based and link bearing-based link eliminations.  

As stated earlier, the PUDO links adjustment algorithmic step adjusts PU and DO links sequentially 

for an (𝑟, 𝑣) match or candidate match, in which it adjusts PU links before DO links. The procedure to 

choose 𝑘𝑃𝑈𝐷𝑂 candidate links for PU and DO link adjustment for a request-vehicle (candidate) match is 

described as follows: 

1. Construct an R-Tree of all feasible candidate PU/DO links (PU links for PU link adjustment, DO links 

for Dropoff link adjustment) that have fulfilled the walk distance range and link bearing constraints as 

described in Section 4.3.1 and 4.3.2. 

2. Perform a find nearest links search query on this R-Tree to find 𝑘𝑃𝑈𝐷𝑂 candidate links based on the 

following criteria: 

a. For DO link adjustment where the new request’s destination is the last stop in the vehicle’s tour, 

query the 𝑘𝑃𝑈𝐷𝑂 nearest feasible candidate links from the R-Tree closest to the stop preceding 

the new request’s DO link. This is illustrated in Figure 7b.  

b. For all other cases, construct a minimum bounding box rectangle using the maximum and 

minimum coordinates of the stops preceding and succeeding the new request’s link (origin link 

for PU link adjustment, destination link for DO link adjustment) in the vehicle’s tour. Also 

construct a polyline object denoting the vehicle’s Euclidean path connecting the stops preceding 

and succeeding the new request’s link. The 𝑘𝑃𝑈𝐷𝑂 nearest link search query is performed based 

on the location of the new request link with respect to the bounding box: 

i. If the new request link is within the bounding box, then query the 𝑘𝑃𝑈𝐷𝑂  nearest 

candidate links from the R-Tree closest to the vehicle path. This is illustrated in Figure 

6d. 

ii.  If the new request link is outside the bounding box, then query the 𝑘𝑃𝑈𝐷𝑂  nearest 

candidate links from the R-Tree closest to the bounding box. This is illustrated in Figure 

8. 
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Figure 7. DO Links Adjustment in Case of Last DO in vehicle tour: (a) Finding Walkable Links and (b) Finding 

the Closest Link from Preceding Stop 

 
Figure 8. PU/DO Links Adjustment in the Outside Bounding Box Case 

4.3.4 Best adjusted PU/DO Link Selection 

This step involves choosing the best link for PU/DO link adjustment by evaluating from the 𝑘𝑃𝑈𝐷𝑂 

feasible candidate links returned from the R-Tree query in the previous step. The PU/DO link is adjusted if 

it results in a reduction in total vehicle travel time to complete the sequence of PUDOs in its tour (including 

serving the new request) as known during the matching time step. PU/DO link adjustment is not performed 

if none of the candidate PU or DO links returned from the previous step results in a travel time reduction 

for the vehicle. The procedure to select the best candidate PU/DO link is described below in Algorithm 4. 

Sections 4.3.1 to 4.3.4 are performed first for PU link adjustment for a (𝑟, 𝑣) pair and repeated for DO link 

adjustment. 

Algorithm 4 – Optimal Adjusted PU/Dropoff Link for New (𝒓, 𝒗) pair 

 

 

Input: Unassigned request 𝑟, Vehicle 𝑣, PU adjustment or DO adjustment (Boolean) 

Output: Adjusted PU/DO Location, PUDO Sequence, Insertion Cost and Travel time after PU/DO adjustment 

Procedure: 

Let 𝑆𝑟,𝑣
∗  be the Optimal PUDO Sequence for vehicle 𝑣 after inserting request 𝑟 (from Algorithm 3) 

Let 𝑡𝑆𝑟,𝑣
∗  be the minimum total travel time for the vehicle 𝑣 to complete the optimal PUDO sequence 𝑆𝑟,𝑣

∗  

Let 𝐶𝑣,𝑟(𝑜𝑟,𝑑𝑟)
 be the insertion cost of adding request 𝑟 to trip sequence of vehicle 𝑣 before PUDO links adjustment 

Let 𝐶𝑣,𝑟
(𝑜𝑟

′ ,𝑑𝑟)

∗  be the insertion cost of adding request 𝑟 to trip sequence of vehicle 𝑣 after PU Link adjustment 

Let 𝐶𝑣,𝑟
(𝑜𝑟

′ ,𝑑𝑟
′ )

∗  be the insertion cost of adding request 𝑟 to trip sequence of vehicle 𝑣 after DO Link adjustment 

Let 𝐿𝑃𝑈/𝐷𝑂 be the set of optimal PU/DO links returned from Section 4.3.3 

Let 𝑙∗ be the optimal adjusted PU/DO link 

Initialize values based on whether PU or DO link is being adjusted 

if PU Link Adjustment then 

 𝑆𝑟,𝑣
∗  = 𝑆𝑟,𝑣

∗  returned by Algorithm 3 before PU Link adjustment 

 𝑡𝑆𝑟,𝑣
∗  = 𝑡𝑆𝑟,𝑣

∗  returned by Section 4.3 before PU Link adjustment 
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 𝐿𝑃𝑈/𝐷𝑂  = 𝐿𝑃𝑈 feasible alternative PU links returned by Section 4.3.3 

 𝑙∗ = 𝑜𝑟  

 𝐶𝑣,𝑟
(𝑜𝑟

′ ,𝑑𝑟)

∗ =  𝐶𝑣,𝑟(𝑜𝑟,𝑑𝑟)
 returned by Section 4.2.4 before PU Link adjustment 

end if 

if Dropoff Link Adjustment then  

 𝑆𝑟,𝑣
∗  = 𝑆𝑟,𝑣

∗  returned by Algorithm 4 after PU Link Adjustment 

 𝑡𝑆𝑟,𝑣
∗  = 𝑡𝑆𝑟,𝑣

∗  returned by Algorithm 4 after PU Link Adjustment 

 𝐿 = 𝐿𝐷𝑂 feasible alternative Dropoff links returned by Section 4.3.3 

 𝑙∗ = 𝑑𝑟    
 𝐶𝑣,𝑟

(𝑜𝑟
′ ,𝑑𝑟

′ )

∗  =  𝐶𝑣,𝑟
(𝑜𝑟

′ ,𝑑𝑟)
 returned by Algorithm 4 after PU Link adjustment  

end if 

for each 𝑙 ∈ 𝐿 do 

 if PU Link Adjustment then 

  𝑜𝑟
′ = 𝑙  

 end if 

 if Dropoff Link Adjustment then 

  𝑑𝑟
′ = 𝑙 

 end if 

Find updated optimal PUDO sequence 𝑆𝑟,𝑣
′  and updated vehicle travel time 𝑡𝑆𝑟,𝑣

′  using Algorithm 3 

Find updated request travel times 𝑡𝑟′,𝑣
𝑤  and 𝑡𝑟′,𝑣

𝑖𝑣  ∀𝑟′ ∈ 𝑣𝑟 ∪ {𝑟} from Section 4.2.2 for the updated         PUDO 

sequence 𝑆𝑟,𝑣
′   

Check for violation of time window constraints ∀𝑟′ ∈ 𝑣𝑟 ∪ {𝑟} based on the new optimal PUDO sequence 𝑆𝑟,𝑣
′  

after adjusting PU link (Section 4.2.3) 

Choose the PU/DO link that results in the least vehicle travel time without violating time window constraints 

 if no time window constraints violated and 𝑡𝑆𝑟,𝑣
′  < 𝑡𝑆𝑟,𝑣

∗  then 

  𝑡𝑆𝑟,𝑣
∗  = 𝑡𝑆𝑟,𝑣

′  

              𝑙∗ = 𝑙  
Update insertion cost for the (𝑟, 𝑣) pair after adjusting PU or DO link based on Section 4.2.4 

  if PU Link Adjustment then 

           𝐶𝑣,𝑟
(𝑜𝑟

′ ,𝑑𝑟)

∗ = 𝐶𝑣,𝑟
(𝑜𝑟

′ ,𝑑𝑟)

′   

  end if 

        if Dropoff Link Adjustment then 

          𝐶𝑣,𝑟
(𝑜𝑟

′ ,𝑑𝑟
′ )

∗ = 𝐶𝑣,𝑟
(𝑜𝑟

′ ,𝑑𝑟
′ )

′   

  end if 

 end if 

end for 

Finalize adjusted PU/DO link, Insertion Cost,  PUDO sequence corresponding to 𝑡𝑆𝑟,𝑣
∗  

if PU Link Adjustment then 

        𝑜𝑟
′ = 𝑙∗  

        𝐶𝑣,𝑟
(𝑜𝑟

′ ,𝑑𝑟)
= 𝐶𝑣,𝑟

(𝑜𝑟
′ ,𝑑𝑟)

∗  

        return 𝑜𝑟
′ , 𝐶𝑣,𝑟

(𝑜𝑟
′ ,𝑑𝑟)

, 𝑆𝑟,𝑣
∗ , 𝑡𝑆𝑟,𝑣

∗  

end if 

if Dropoff Link Adjustment then 

 𝑑𝑟
′ = 𝑙∗  

 𝐶𝑣,𝑟
(𝑜𝑟

′ ,𝑑𝑟
′ )

= 𝐶𝑣,𝑟
(𝑜𝑟

′ ,𝑑𝑟
′ )

∗   

 return 𝑑𝑟
′ , 𝐶𝑣,𝑟

(𝑜𝑟
′ ,𝑑𝑟

′ )
, 𝑆𝑟,𝑣

∗  , 𝑡𝑆𝑟,𝑣
∗  

end if 
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4.4 Optimal Request-Vehicle Matching 

The optimal matching of requests to vehicles is performed either before or after PUDO links 

adjustment based on the 𝛾𝐶2𝐶  parameter. If PUDO links adjustment is performed before matching, then the 

cost value associated with each candidate (𝑟, 𝑣) match is the insertion cost 𝐶𝑣,𝑟
(𝑜𝑟

′ ,𝑑𝑟
′ )

 returned by Algorithm 

4 after adjusting the PU and DO links for 𝑟 if assigned to 𝑣. Thus, the PUDO links adjustment is also a 

deciding factor in the optimal (𝑟, 𝑣) matching process, since the objective function reflects the change in 

insertion cost for each (𝑟, 𝑣) candidate upon adjusting the PUDO links. If PUDO links adjustment is 

performed after matching, then the cost value for each (𝑟, 𝑣) match candidate is the insertion cost before 

PUDO links adjustment calculated in Section 4.2.4. In this case 𝐶𝑣,𝑟
(𝑜𝑟

′ ,𝑑𝑟
′ )

= 𝐶𝑣,𝑟(𝑜𝑟,𝑑𝑟)
. The objective of 

each iteration of the optimal request-vehicle matching procedure is to match unassigned requests to 

available vehicles such that the total insertion cost is minimized: 

𝑍 = 𝑚𝑖𝑛 ∑ ∑ (𝐶𝑣,𝑟
(𝑜𝑟

′ ,𝑑𝑟
′ )

− 𝑃)

∀𝑣∈𝑉𝑟∀𝑟∈𝑅𝑢

⋅ 𝑋𝑣,𝑟 (11) 

where 𝑅𝑢 is the set of all unassigned requests at the beginning of each iteration of the optimal matching 

stage, and 𝑉𝑟  is the set of all feasible vehicle candidates for request 𝑟 , where 𝑉𝑟 ⊂ 𝑉 . 𝐶𝑣,𝑟
(𝑜𝑟

′ ,𝑑𝑟
′ )

 is the 

insertion cost of assigning request 𝑟 to vehicle 𝑣 with the following PUDO links (𝑜𝑟
′ , 𝑑𝑟

′ ). 𝑃 is a penalty 

cost incurred for not making an assignment; 𝑃  is a large positive number. 𝑋𝑣,𝑟  is the binary decision 

variable denoting whether request 𝑟 is matched with vehicle 𝑣.  

The matching problem is subject to two sets of constraints. The set of constraints in Eqn. 12 suggest 

that each request 𝑟 ∈ 𝑅𝑢 can be assigned to at most one vehicle. The set of constraint in Eqn. 13 limit each 

vehicle to be assigned to at most one unassigned request.  

∑ 𝑋𝑣,𝑟

𝑣∈𝑉

≤ 1 ∀𝑟 ∈ 𝑅𝑢 (12) 

∑ 𝑋𝑣,𝑟

𝑟∈𝑅𝑢

≤ 1 ∀𝑣 ∈ 𝑉 (13) 

The C2C-RP problem is solved iteratively (Sections 4.2 to 4.4) at each decision epoch until there are 

no unassigned requests left (𝑅𝑢  =  ∅) or no feasible candidate vehicles for each unassigned request (𝑉𝑟 =

∅,  ∀𝑟 ∈ 𝑅𝑢).  

5 Computational Experiment Set-up 

To evaluate the performance of the proposed C2C-RP decision policy and algorithmic approach, we 

constructed a large number of computational experiments. This section describes the simulation 

environment wherein we embed the proposed C2C-RP decision policy and algorithmic approach (Section 

5.1), the road network model (Section 5.2), the performance metrics for analysis (Section 5.3), and the 

scenarios for testing (Section 5.4). The four MOD service types evaluated are C2C-RP, C2C-RH, D2D-RP, 

D2D-RH. To operate D2D services we use the same decision policy and solution algorithm as the C2C 

service, except that PUDO links are not adjusted (i.e., Section 4 excluding section 4.3). Similarly, to operate 

ride-hailing services, we use the same decision policy and solution algorithm as the ride-pooling service, 

except that we only consider idle vehicles in the matching subproblem.  
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5.1 POLARIS Simulation Environment 

We use the large-scale agent-based simulation framework called POLARIS (Auld et al., 2016) to 

compare the four MOD service types and evaluate the C2C-RP decision policy and algorithmic approach. 

POLARIS integrates supply and demand and allows the simulation of MOD services in a congestible 

network with full feedback (Gurumurthy et al., 2020). POLARIS and its modules can simulate activities 

and trips in a large metropolitan region with over 10 million people in under 5 hours.  

POLARIS is a high-performance C++ codebase for agent-based modeling of transportation demand 

and supply. The tool consists of several modules for population synthesis, long-term and short-term 

planning, vehicle routing, traffic flow, and has functionality to model transit, MOD services, and freight at 

a high-level of detail. The population synthesis module creates person agents for the target region based on 

underlying demographic information as sourced from the Census and American Community Survey (ACS) 

in the United States. Consistent with agent-based modeling, each individual makes travel and activity 

decisions based on its individual characteristics and information available to the individual regarding the 

state of the system (e.g., prevailing travel times, modal attributes, destination attributes, etc.). 

5.1.1 Corner-to-Corner Routing Module in POLARIS 

The MOD module in POLARIS models operations through a centralized operator. The operator 

maintains control over all fleet vehicles, tracks their real-time information, and runs algorithms to determine 

the next set of instructions to pass to the vehicles. To enable easy incorporation of new algorithms, a generic 

structure exists in POLARIS for different aspects of MOD control: such as matching, repositioning, 

charging (in the case of EVs), and parking. These strategies are custom-coded to either serve a single 

purpose like a matching algorithm or the modeler can control several aspects of operation simultaneously 

like the joint control of matching, repositioning, and charging of fleet vehicles (Dean et al., 2022).  

We now briefly describe the general flow of information and control in POLARIS for a MOD request 

to be received and served. The fleet operator is informed of requests that originate from person agents. 

Requests encompass information on time of request, PU location, DO location, and the estimated fare, 

travel time, and costs associated with serving it. The matching subroutine receives trip requests from the 

operator and can either immediately assign an available vehicle or batch the requests over a pre-defined 

duration and then solve an optimization-based request-vehicle matching problem. Once the matching 

subroutine is complete, an update regarding the match is passed on to both the person agent and the assigned 

vehicle (if matched). Assuming the match is successful, the vehicle is instructed to route itself to the PU 

location and then, on picking the traveler, proceed to the DO location. While en-route, new requests can be 

added to the existing vehicle trip, with the vehicle reporting available seats remaining.  

The C2C service in this paper requires travelers to walk to their PU locations and from their DO 

locations. Trips in POLARIS are typically modeled to start and end at activity locations. Activity locations 

represent buildings and places that are typical origins and destinations. Depending on network density 

incorporated in the model, some level of aggregation may exist in the number of activity locations used to 

represent the underlying origins and destinations. Route computation considers all possible links associated 

with the origin and destination activity locations as candidates for the shortest path, and finally results in a 

link-to-link vehicle trajectory. Once in the network, vehicles follow the trajectory subject to constraints of 

the traffic flow model. Trips are completed when the vehicle enters the last link of its trajectory. While 

Gurumurthy and Kockelman (2022) show the benefits of aggregation at the activity location level for C2C 

MOD service, their approach does limit flexibility in assigning travelers to PUDO locations in the region. 

Hence, in the current study, we allow traveler PUDOs in every link in the network. This approach both 

reduces overall VMT and improves traveler experiences compared to the approach in Gurumurthy and 
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Kockelman (2022), as the later study requires all travelers to walk to PUDO locations, even if these walking 

trips do not improve vehicle utilization and productivity. Changes in PUDO links are transmitted to the 

person and vehicle agents at the end of each batching interval once the iterative procedure terminates.  

5.2 Study Network  

We use the default network in POLARIS – the Bloomington IL network (Figure 9) – to evaluate the 

C2C-RP algorithm. The network includes 3057 intersections, 4527 directional drive links, 6885 walk links 

and 185 Traffic Analysis Zones (TAZs). The walk network is broken down into links with a maximum 

length of 250 meters. There are 2,833 activity locations in the network which represent request origins and 

destinations. The default PU link and DO link for each new request is the link closest to the request origin 

and destination activity locations respectively.  

 
Figure 9. Bloomington, IL Network 

5.3 Metrics for Analysis 

To compare the four MOD service types, we consider two cost dimensions, operator costs and user 

costs. We use average vehicle kilometer traveled (VKT) per served request as the main operator cost metric. 

We normalize by ‘served requests’ to prevent outcomes where an efficient and productive service generates 

more VKT while serving a large number of requests than an inefficient and unproductive service that 

generates lower VKT while serving significantly fewer requests.  

The main customer cost metric is request-to-destination time, which as the name suggests, measures 

the total time between a traveler requesting a vehicle and the same traveler arriving at their destination 

location. In C2C services, request-to-destination time includes time waiting to be assigned, access walking 

time, waiting time at the PU link, in-vehicle time, and egress walking time. The results will explicitly 

delineate the time travelers spend in each state.  

We also include matching rate, the percentage of all MOD traveler requests who are served by the 

MOD service, as a key performance metric. This metric is necessary for a holistic comparison of MOD 

service types; without matching rate, a service type or decision policy that prioritizes easy-to-serve requests 

may perform well in terms of VKT per served request and request-to-destination time for served request, 

compared with other policies that attempt to serve all requests.  
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The final metric we use is average vehicle occupancy (AVO) per VKT. AVO per VKT includes empty 

vehicle kilometers as well as vehicle kilometers with one passenger, two passengers, three passengers, and 

four passengers. This metric does not perfectly align with either operator costs or user costs, but it is a 

metric of interest to transportation planners and policymakers. 

5.4 Scenarios 

This section describes the scenarios developed to help answer the study’s two main research questions. 

We first introduce the baseline scenarios, specifically which parameters we vary in the baseline scenarios 

and which parameters are fixed. Next, we describe the additional scenarios developed to provide insights 

into various service design decisions, the inefficiencies associated with travel time uncertainty, and various 

algorithmic strategies and decision policies.  

Table 2 shows that in the set of baseline scenarios, the only two parameters that vary are the MOD 

service type and the fleet size. Maximum walk range, walking speed, and the sequencing of matching and 

PUDO links selection are fixed. These baseline scenarios aim to compare and contrast the four MOD service 

types under various supply-demand ratios, where the demand is fixed, and the supply varies across 

scenarios. The results of the baseline scenarios are described in Section 6.1. The number of available seats 

for ride-pooling services (C2C-RP and D2D-RP) is fixed at 4. 

After the baseline scenarios, we create several additional sets of scenarios. The first additional set of 

scenarios involves varying the maximum walk range parameter 𝐷𝑤𝑎𝑙𝑘
𝑚𝑎𝑥  alongside the MOD service type and 

fleet size to perform sensitivity analysis on user and operator costs. We vary 𝐷𝑤𝑎𝑙𝑘
𝑚𝑎𝑥  between 250 and 1000 

meters in an increment of 250 meters. The results are presented in Section 6.2. 

The second additional set of scenarios varies ‘walking’ speed 𝑠𝑤 alongside MOD service type and 

fleet size. In these scenarios, there we use a baseline 𝑠𝑤 of 5 km per hour speed, and the ‘fast walking’ (or 

e-scooter) speed of 20 km per hour. Results of this analysis are provided in Section 6.3. 

The third additional set of scenarios varies the sequence of Request-Vehicle matching and PUDO links 

selection sub problems, alongside MOD service type and fleet size. This is done by enabling/disabling the 

Boolean flag γ𝐶2𝐶. The two alternative orders are adjust PUDO links after matching and adjust PUDO links 

before matching. Section 6.4 describes the results of this analysis. 

Finally, we also run a set of scenarios to analyze the computation time and scalability of the 

implemented solution methodology for the C2C-RP problem (Section 6.5). This is done by analyzing the 

total computational time and stage-wise computational time by varying 𝐷𝑤𝑎𝑙𝑘
𝑚𝑎𝑥 , 𝑠𝑤  and γ𝐶2𝐶  parameters 

across different MOD service types for 2 different fleet sizes (5,000 and 10,000 vehicles).  

To ensure consistency while comparing across several scenarios, the total demand, origin, destination 

as well as the request initiation times are kept fixed across all scenarios. Repeating the same scenario with 

all parameters unchanged yielded a less than 0.1% change in values of the metrics evaluated. The spatial 

distribution of the initial location of vehicles at the beginning of simulation is also same across scenarios. 

Fleet repositioning is also disabled so as to control for idle vehicle movements from biasing the output 

metrics evaluated across the four different MOD types. 
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Table 2: Varying and Fixed Parameters in Baseline Scenarios (Section 6.1).  

Fixed or Varying? Parameter Parameter Values 

Varying Params 

MOD Service Type 

D2D-RH (𝑐𝑣𝑒ℎ = 1) 

D2D-RP (𝑐𝑣𝑒ℎ = 4) 

C2C-RH (𝑐𝑣𝑒ℎ = 1) 

C2C-RP (𝑐𝑣𝑒ℎ = 4) 

Fleet Size (veh.) 
1000, 1500, 2000, 3000, 4000, 5000, 6000, 

7500, 9000, 10000 

Fixed Params for PUDO 

Links Adjustment  

(C2C-RP and C2C-RH) 

𝐷𝑤𝑎𝑙𝑘
𝑚𝑎𝑥  1,000 m 

γ𝐶2𝐶  
FALSE 

(Adjust PUDO link after matching) 

𝑠𝑤  5 km/h 

𝑘𝑃𝑈𝐷𝑂 5 link candidates 

𝜃𝑏𝑢𝑓 30° 

Fixed Params for R-V 

Matching (All Four MOD 

Services) 

𝑘𝑣𝑒ℎ 8 vehicles 

𝑘𝑣𝑒ℎ
𝑖𝑑𝑙𝑒  2 vehicles 

𝜃𝑚𝑎𝑥 30° 

𝐷𝑑𝑖𝑟
𝑚𝑎𝑥  3000 m 

𝐷𝑟𝑒𝑣
𝑚𝑎𝑥  3000 m 

𝐷𝑑𝑒𝑡𝑜𝑢𝑟
𝑚𝑎𝑥  6000 m 

𝑡𝑚𝑎𝑥
𝑤  1200 seconds 

𝑡𝑚𝑎𝑥𝑎𝑏𝑠
𝑖𝑣  900 seconds 

𝑡𝑚𝑎𝑥𝑟𝑒𝑙
𝑖𝑣  50% 

𝑤𝑤𝑡  1.0 

𝑤𝑖𝑣𝑡𝑡  1.0 

Simulation Parameters 

Analysis Period 24 hours 

Δ 30 seconds 

# Requests 
221,711 (Fixed)  

1 request = 1 traveler 

Initial Fleet Location 
Distributed inversely proportional to TAZ 

area 

Fleet Repositioning FALSE 

6 Results and Discussion 

6.1 Operator-User Cost Trade-off in MOD Systems – Baseline Scenario 

This section aims to answer this study’s main research question: what are the trade-offs between 

operational costs and user costs across D2D-RH, D2D-RP, C2C-RH, and C2C-RP? Figure 10b shows 

significant operator cost differences between the four MOD services, particularly when the supply (i.e., 

vehicle fleet size) is low. With a fleet size of 2000 vehicles, C2C-RP has an average VKT per request of 

nearly 5.5, which is lower than the D2D-RP at 6.0, and substantially lower than C2C-RH at 7.0 and D2D-

RH at over 7.6. The operator cost benefits of pooled-rides at low fleet sizes are even more impressive when 

considering the significantly higher matching rates for ride-pooling than ride-hailing. Hence, there are clear 

operational cost benefits associated with pooled rides, as found in many other studies (Hyland and 

Mahmassani, 2020). 

Figure 10b also shows there is undoubtedly an operational benefit associated with C2C service over 

D2D service. Interestingly, this gap in VKT per request seems to remain steady, or even increase, as the 

fleet size increases. This is an important finding, particularly the quantification of the VKT per request gap 
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between C2C and D2D services. While the gap is not as large as the ride-pool vs. ride-hail gap for matching 

rate in Figure 10a, at low to medium fleet sizes, C2C service does have a significantly higher matching rate 

than D2D, especially at lower values of fleet size. 

Figure 10c shows the clear downsides of ride-pooling and C2C service, relative to ride-hailing and 

D2D service, respectively in terms of total user travel time. Given the low matching rates for both ride-hail 

services at fleet sizes below 3000, we will compare the services in terms of request-to-destination time for 

fleet sizes 3000 and larger. At a fleet size of 3000 vehicles, D2D-RH service has an average request-to-

destination time of slightly over 8 minutes, whereas the C2C-RH service is around 13 minutes. The gap 

between these two services is nearly all due to egress walk distance/time. There is also an approximately 

4-minute gap for request-to-destination time between C2C-RP and D2D-RP.  

 
Figure 10. Performance metrics for MOD service types: (a) Matching Rate, (b) Average VKT per Request, (c) 

Average Travel Time broken down by Segment, and (d) Average Vehicle Occupancy 

Figure 10d is consistent with Figure 10a and Figure 10b and the features of each service design—the 

AVO per request is significantly higher for ride-pool compared to ride-hail. There is also a gap between 

C2C and D2D, especially at low fleet sizes, but it is noticeably smaller than the gap between ride-pool and 

ride-hail.  

Additionally, Figure 10d shows that AVO decreases steadily as fleet size increases. This is simply the 

result of the decision policy using all the vehicles in the fleet to reduce traveler wait times as shown in 
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Figure 10c. Interestingly, AVO per request of C2C-RP is slightly greater than D2D-RP for low fleet sizes, 

whereas, AVO per request of C2C-RH is slightly lower than D2D-RH (or nearly the same) for all fleet sizes. 

This could potentially be because adjusting PUDO links for a ride-hailing service does not increase sharing 

of trips in the system since a ride-hail vehicle serves only one request at a time. 

In summary, regarding the original research question, there is a clear trade-off between operator cost 

and user costs in these four MOD service designs. The gap between ride-hail and ride-pool is the most 

significant in terms of operator costs, but there is also a significant gap between C2C and D2D (5 to 10% 

reduction in VKT per served request for C2C services compared to D2D). In terms of user costs, there is 

not a huge gap between ride-hail and ride-pool, but there is a significant gap between C2C and D2D. 

However, the gap between C2C and D2D is almost entirely due to the egress walking distance/time.  

The implications of the gap between C2C and D2D being from egress walking distance are several. 

First, from a behavioral perspective, some users may find this egress walking to be both highly inconvenient 

and onerous, while other users may find a 3-or 4-minute walk to be only slightly inconvenient and even 

pleasant, depending on their schedule, the weather, and various other factors. The heterogeneity of travelers 

in terms of the willingness to walk suggests there is likely a role for multiple service offerings from the 

same MOD service provider.  

Second, from a decision policy/algorithm and service design perspective, it is possible to put more 

weight on the disutility of walking in the algorithm, in order to decrease average egress walking distances. 

However, this algorithmic change would likely increase the operator costs for a C2C service. Similar to 

applying more weight to the disutility of walking in the decision policy function, it is also possible to 

explicitly limit the maximum total and/or egress walking distance for travelers. The next section analyzes 

variations in this parameter in terms of both operator and user costs.  

Figure 11 illustrates the effect on user and operator costs if MoD operators offer pooled C2C services 

with only PU Link adjustments (C2C-RP-PU) or only DO Link adjustments (C2C-RP-DO) compared to 

C2C-RP and D2D-RP for the baseline scenario parameters as listed in Table 2. Figure 11a shows that VKT 

per served request for C2C-RP-PU is slightly less than D2D-RP while it is slightly more for C2C-RP-DO 

compared to C2C-RP. This is also reflected in the segment wise travel times shown in Figure 11, with total 

travel time of C2C-RP-PU being slightly more than  D2D-RP, while total travel time of C2C-RP-DU being 

slightly less than C2C-RP. This trend can be explained when comparing the % of requests with PU Links 

adjusted with those with DO links adjusted (Figure 11c and Figure 11d) as well as the average access and 

egress walk distances in their respective cases (Figure 11e and Figure 11f). Even though the maximum walk 

range is 1,000 m for both C2C-RP-PU and C2C-RP-DO, the average access walk distance for adjusted PU 

links in C2C-RP-PU is less than half of the egress walk distance for adjusted DO links in C2C-RP-DO. 

This is because, the algorithm proposed in this paper calculates the effective maximum PU walk range 

(𝐷𝑤𝑎𝑙𝑘
𝑃𝑈 ) for each request-vehicle pair in such a way that instances of vehicles having to wait for the request 

at the adjusted PU link is reduced (Section 4.3.1). Whereas this does not apply for DO links adjustment. 

This also explains the higher instances of requests with DO links adjustment (Figure 11d) compared to 

those with PU links adjustment (Figure 11c).  
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Figure 11. Performance metrics with selective ‘PU Only’ or ‘DO Only’ link adjustments (a) Average VKT per 

Request, (b) Average Travel Time broken down by Segment, (c) % of Requests with PU Links Adjusted, (d) % 

of Requests with DO Links Adjusted, (e) Average Access Walk Distance when PU Link is Adjusted, and (f) 

Average Egress Walk Distance when DO link is Adjusted 

The percentage of instances as well as average access walk distance for adjusted PU links in C2C-RP-

PU scenario is slightly more than C2C-RP. This could be because, since DO links are not adjusted in C2C-
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RP-PU, it offers slightly more flexibility for the operator to adjust PU links without violating time window 

constraints. The prevalence of higher instances of DO links adjustment in C2C-RP-DO compared to C2C-

RP can also be explained similarly. Additionally, the access walk range and percentage of requests with PU 

links adjustment decreases with increasing fleet size for both C2C-RP-PU and C2C-RP. This is because an 

unassigned request is closer to an available vehicle as fleet size increases. On the other hand, % of requests 

with DU links adjustment increases with increasing fleet size (Figure 11d) as more vehicles means less 

waiting time giving more flexibility to adjust DO links. It is also interesting to note that the average egress 

walk distance for requests with DO links adjustment remains more or less flat across fleet sizes. This could 

be because unlike calculating the effective maximum PU walk range, DO walk range calculation is not 

affected by proximity of requests to a vehicle. 

6.2 Sensitivity Analysis with respect to Walk Range  

Figure 12 displays the computational results for variations in maximum walking distance 𝐷𝑤𝑎𝑙𝑘
𝑚𝑎𝑥  (i.e., 

maximum walk range for PU as well as DO), across three fleet sizes and both C2C MOD services. The 

figure also shows the results for the two D2D MOD services, but these services always have zero walk 

range. Walk speed (𝑠𝑤) is kept fixed at 5 kmph. 

The matching rate results in Figure 12a indicate that for these three fleet sizes, walking range does not 

have significant practical impact on matching rate, although longer walking ranges do slightly increase 

matching rate.  

Figure 12b and Figure 12c show that as walking range decreases from 1000m to 250m, VKT per 

request increases and request-to-destination time decreases for both C2C-RH and C2C-RP. Interestingly, 

the relationship is strongly linear for both C2C services, both performance metrics, and all three fleet sizes. 

However, the results indicate that there is a step change improvement in VKT per request when moving 

from D2D to some walking, i.e., a 250m walking range. This latter result suggests that even allowing a 

small walking distance can produce significant operational efficiencies in the system. This should not be 

surprising, but it is important, as having travelers walk even a short distance can prevent the worst-case 

PUDO links for vehicles. A small amount of walking can also ensure the PUDO links are on links with the 

same bearing as the vehicle’s direction of travel after picking up or dropping off a request. 

Figure 12d shows that walking range does not have a significant impact on AVO for ride-pool or ride-

hail nor for any fleet size. Even though Figure 12d showed that the AVO for C2C-RP with a baseline walk 

range of 1000 meters is slightly more than D2D-RP for low fleet sizes, Figure 12d denotes that change in 

AVO for C2C-RP services for every 250 meter increment in maximum walk range is very minimal. 

 

 



 

32 

 

 

 
Figure 12. Sensitivity Analysis with respect to Walk Range: (a) Matching Rate, (b) Average VKT per Request, (c) Average Request-to-destination Time, 

and (d) Average Vehicle Occupancy 
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6.3 What about e-scooters? Sensitivity Analysis with respect to Walk Speed  

This section analyzes the change in fleet performance and user cost with respect to changes in walk 

speed (𝑠𝑤). We compare the baseline walking speed of 5km/h with a much faster ‘walking’ speed of 

20km/h. This analysis serves two purposes, namely, to assess the potential benefits of using ubiquitous—

personal or shared—e-scooters as access and egress modes to/from adjusted PUDO links, and to illustrate 

the role of travel time uncertainty across service performance metrics. 

 
Figure 13. Sensitivity Analysis with respect to Walk Speed: (a) Matching Rate, (b) Average VKT per Request, 

(c) Average Request-to-destination Time, and (d) Average Vehicle Occupancy 

Figure 13 shows that increasing walking speed increases matching rate slightly, decreases average 

VKT per request, significantly decreases request-to-destination time, and does not significantly impact 

AVO, compared to results presented for baseline walk speed in Figure 10. Figure 13c shows that the 

increased walking speed decreases request-to-destination time by around 5 minutes. This five-minute 

reduction in travel time effectively makes C2C competitive with D2D for both ride-hailing and ride-pooling 

along this dimension, while retaining a significant advantage in terms of VKT per request. 

Figure 14 aims to provide insights on how/why faster walking speeds dramatically improve request-

to-destination time, while also improving VKT per request and matching rate. Figure 14a shows the 

matching rate as a function of walking range, walking speed and fleet size. Naturally, as all three of these 

input parameters increase, particularly fleet size, the matching rate increases. Figure 14b shows the 

frequency (i.e., percentage) of users with adjusted PU links (i.e., a different PU link than their trip origin). 

As walk range and walk speed increase, the frequency of PU link adjustments increases. The relationship 

between fleet size and PU link adjustments is not monotonic. Matching rate and frequency of PU link 
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adjustments are relevant background information, for the two main sets of results in Figure 13c and Figure 

13d. 

 
Figure 14. PU Link Adjustments and Vehicle Waiting at PU Link (C2C-RP Scenarios): (a) Matching Rate, (b) 

PU Link Adjustment Rate, (c) Rate of Vehicles Waiting for Requests with Adjusted PU links, and (d) Average 

Vehicle Wait Time at Adjusted PU Link for Early Arrivals 

Figure 14c shows the probability a traveler’s assigned vehicle had to wait at the traveler’s PU link for 

the traveler to arrive, conditional on the traveler having an adjusted PU link. In such instances, the vehicle 

arrived earlier than the traveler at the adjusted PU link and hence has to wait for the traveler to complete 

their access walk trip to the adjusted PU link. The results clearly indicate that faster walking speeds 

drastically reduce the probability of a traveler’s vehicle having to wait for them to arrive at the adjusted PU 

link. Similarly, Figure 14dshows that even when a vehicle waits for a traveler in the faster walking speed 

case, which is much less likely to happen, the vehicle waiting time is significantly lower than the case with 

slower walking speeds.  

Figure 14c and Figure 14d collectively illustrate why faster walking speeds can improve operational 

efficiency and significantly reduce request-to-destination travel time—the faster walking speeds 

significantly reduce instances where vehicles wait for travelers, and in the case where vehicles do wait for 

travelers, the wait time is quite short. This combination reduces the amount of lost or unproductive vehicle 

time in the system. This could also be the reason why matching rate shown in Figure 13a is slightly higher 

for 20 kmph walk speed compared to 5 kmph walk speed, especially for low fleet sizes. 

As mentioned in the Wang et al. (2022) review article, the issue of vehicles waiting for travelers at PU 

locations in C2C systems, is an overlooked issued. It is also an issue that does not or should not arise when 

travel times in the simulation environment are deterministic. However, travel times in congested real-world 

networks are not deterministic, they are uncertain. The POLARIS model used in this study is what enables 
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us to capture this critical feature of C2C systems that is less relevant in D2D systems. We are concerned 

that other road network simulation models that do not capture travel time uncertainty may over-estimate 

the benefits of C2C services. Similarly, as highlighted in Section 4.3.1, a good estimate of the effective pick 

up walk range (𝐷𝑤𝑎𝑙𝑘
𝑃𝑈 ) value is required to reduce instances where vehicles have to wait for the request to 

arrive at the adjusted PU link. Using the network routed travel times would give a more accurate value for 

vehicle speed 𝑠𝑣 in Eqn. 9 to estimate 𝐷𝑤𝑎𝑙𝑘
𝑃𝑈 , however it is computationally more intensive to perform this 

for each (𝑟, 𝑣) pair compared to using a heuristic. Overestimating 𝑠𝑣  would restrict the value of 𝐷𝑤𝑎𝑙𝑘
𝑃𝑈  

thereby curtailing performance gains that could have been attained with a longer PU walk range. On the 

other hand, underestimating the value of 𝑠𝑣  would lead to overestimating 𝐷𝑤𝑎𝑙𝑘
𝑃𝑈  thereby resulting in 

vehicles arriving early at the adjusted PU link and waiting for the traveler to arrive. Vehicles having to wait 

too long at the curbside to pick up a traveler may also impact curb space utilization as well as congestion 

on the adjacent links. This study could be extended in the future to evaluate such significant externalities. 

6.4 Comparison of Sequencing Request-Vehicle Matching and PUDO Links Adjustment 

This section compares two different algorithmic approaches (i.e., decision policies) for solving the 

C2C-RP problem. This is controlled by the γ𝐶2𝐶  parameter which determines whether PUDO Links 

adjustment is performed either after or before Request-Vehicle matching. In the baseline approach—

labelled C2C-RP-A where the ‘A’ stands for ‘after’—we assign travelers to PUDO links after we assign 

them to vehicles (For each (𝑟, 𝑣) match). In the alternative approach—labelled C2C-RP-B where the ‘B’ 

stands for ‘before’—we assign travelers to PUDO links for each (𝑟, 𝑣) match candidate before we assign 

them finally to vehicles. The C2C-RP-B approach is computationally more intensive than the C2C-RP-A 

approach. This is because, the PUDO links adjustment procedure described in Section 4.3 is repeated for 

every feasible (𝑟, 𝑣) candidate for each request in C2C-RP-B, whereas the procedure is performed only for 

optimal (𝑟, 𝑣) match pairs in C2C-RP-A. Since the effect of PUDO Links adjustment is also factored into 

the insertion cost used in the optimal Request-Vehicle matching module (Section 4.4) for the C2C-RP-B 

strategy, it should be pareto-improving in terms of operator and user costs. However, this depends on the 

accuracy of changes in insertion cost caused due to PUDO links so as to lead to a better optimal (𝑟, 𝑣) 

match after PUDO Links adjustment. 

Figure 15a shows that there is basically no difference between the two algorithmic approaches in terms 

of matching rate. At low fleet sizes, C2C-RP-A does match slightly more travelers to vehicles. Figure 15b 

shows that C2C-RP-B produces significantly lower VKT per request than C2C-RP-A across all fleet sizes. 

This is because the optimal Request-Vehicle matching module is able to make better optimal (𝑟, 𝑣) pair 

matches since the best PUDO links have been chosen for each (𝑟, 𝑣) candidate. The gap between PUDO 

links adjustment before match, and PUDO links adjustment after match is not significant for the ride-hailing 

case in Figure 15b. Figure 15c shows that at low fleet sizes, C2C-RP-B slightly increases request-to-

destination time relative to C2C-RP-A. This change seems to mostly arise from slightly higher access and 

egress walk times (or distances) for C2C-RP-B strategy compared to C2C-RP-A. This is because the current 

formulation of the optimal matching objective function (Eqn. 11) does not include PUDO walk distances. 

Hence the optimal minimum insertion cost matching solution may have slightly longer access and/or egress 

walk distances. For ride-hailing, the gap between the two algorithmic policies is insignificant. Finally, 

Figure 15d shows that vehicle occupancy is higher for C2C-RP-B than C2C-RP-A, which could also be 

explained as C2C-RP-B factoring in PUDO links adjustment to make better optimal matching choices. 
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Figure 15. PUDO Links Adjustment after/before Traveler-Vehicle Matching: (a) Matching Rate, (b) Average 

VKT per Request, (c) Average Travel Time broken down by Segment, and (d) Average Vehicle Occupancy 

6.5 Computational Time Results 

This section aims to illustrate the scalability of the proposed decision policy and algorithmic 

approaches for the C2C-RP problem. All scenarios in this section were run on University of California 

Irvine’s High Performance Computing Cluster (HPC3). The system resources allocated to run the 

simulation on the cluster are 32 logical processors and 128 GB of RAM. Figure 16 shows that for up to 

10,000 vehicles serving up to 220,000 requests over the course of a day, in a detailed mesoscopic 

transportation system simulation model of Bloomington IL, model run times do not exceed 40 minutes. 

Additional test runs in the Chicago network with similar fleet sizes and traveler requests indicate that model 

run time does not explode in a bigger network.  

Figure 16 further shows how computational run time changes with respect to several key parameters. 

As expected, larger fleet sizes require longer run times than shorter fleet sizes. Similarly, longer walk ranges 

require longer run times. The reason for this finding is that longer walk ranges increase the number of 

feasible PUDO links, thereby increasing the size of the PUDO links selection problem. In contrast, Figure 

16 shows that run time increases slightly with higher walk speed. This can be attributed to the increase in 

effective PU walk range value 𝐷𝑤𝑎𝑙𝑘
𝑃𝑈  with a higher value of 𝑠𝑤 which increases the search space of feasible 

PU link candidates. 
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Finally, Figure 16 shows that the pareto-improvement in operator and user costs when using the adjust 

PUDO links before match decision policy (C2C-RP-B), does come at the expense of computational time 

(i.e., a third ‘cost’). The computational run time is significantly larger for C2C-RP-B than C2C-RP-A, since 

PUDO links evaluation is performed for each (𝑟, 𝑣) candidate instead of just (𝑟, 𝑣) match pairs (Explained 

in Figure 17). Hence, in practice, fleet operators can choose between C2C-RP-A and C2C-RP-A depending 

on the computational power they have available and the size of individual problem instances. For the largest 

problem instances (10,000 vehicles, 1000 meters walk range and 5 km/h walk speed), C2C-RP-A takes 

nearly 20% more computation time compared to D2D-RP (26 minutes vs 21 minutes). C2C-RP-B on the 

other hand takes nearly 70% more computation time compared to D2D-RP (36 minutes vs. 21 minutes). 

Figure 17 displays a breakdown of computational run time in each submodule of the C2C-RP solution 

implemented in POLARIS, for the largest problem instance—10,000 vehicles, 5 km/h walk speed, 1,000-

meter walk range. As the figure shows, much of the computational time is spent in the module for 

determining feasible request-vehicle match candidates (‘R-V Candidate Prep Time, Section 4.2). For the 

adjust PUDOs before matching case, the time spent adjusting PUDOs for each request is also quite high. 

Compared to the adjust PUDO links after matching case, the former case takes eight times longer, because 

PUDO links are adjusted for all eight candidate vehicles associated with each request (𝑘𝑣𝑒ℎ parameter in 

Section 4.2), rather than just the single matched vehicle. The computational time will also increase if the 

number of candidate PU/DO links being evaluated (𝑘𝑃𝑈𝐷𝑂) is increased. 

Fortunately, it is straightforward to parallelize the feasible request-vehicle search module as well as 

the PUDO links adjustment module in the code. The algorithm determines candidate vehicles for each 

request independently. Similarly, the algorithm adjusts PUDO links for each (𝑟, 𝑣)  match or match 

candidate independent of the other (𝑟, 𝑣) matches/match candidates. The only C2C-RP module that cannot 

be parallelized is the request-vehicle matching optimization, but this module consumes very little 

computational resources compared to other stages as shown in Figure 17.  

The ‘other processing time’ incorporates the rest of the modules in POLARIS including traffic 

simulation and vehicle pathfinding. Much of this run time is independent of the C2C-RP module.  

Given that the runtime is relatively short to begin with, and the two MOD submodules that take the 

most time can be parallelized, it is clear that the proposed decision policy and algorithm strategy for the 

C2C-RP problem is highly scalable.  
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Figure 16. Computational Time by (a) Walk Range and (b) Fleet Size 

 

 
Figure 17. Computational Time by Matching-PUDO Links Adjustment Sequence (10,000 vehicles, 5 km/h walk 

speed, 1,000 m walk range) 
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7 Conclusion 

MOD services serve a sizable portion of demand in many urban areas. The D2D-RH service still 

dominates the MOD market, which is problematic because ride-hailing includes significant deadheading 

miles and low vehicle occupancies. Several MOD service variants offer many of the benefits of D2D-RH 

with significantly fewer vehicle miles and higher vehicle occupancies. These variants include D2D-RP, 

C2C-RH, and C2C-RP. One of the two goals of this study is to compare these four MOD service variants 

in terms of user costs and operator costs. The second goal of this study is to develop an effective and scalable 

decision policy and solution algorithm to solve the C2C-RP operational problem.  

The C2C-RP operational problem is a complex highly dynamic sequential decision problem with a 

very large decision space. The C2C-RP operator needs to frequently assign new requests to vehicles and to 

PU and DO links. We propose a decision policy that decomposes the decision problem into two 

subproblems, the request-vehicle matching problem and the PUDO links adjustment problem. The decision 

policy utilizes the location and planned itineraries of every vehicle in the fleet, the status of each request in 

the system, forecasted link travel times, and geospatial information to solve both subproblems in every 

decision epoch. The proposed decision policy dynamically assigns new requests to vehicles, sequences and 

re-sequences traveler PU and DO tasks, schedules and re-schedules traveler PU and DO tasks, and selects 

PU and DO locations for each request-vehicle match or candidate match. We also vary the order in which 

we iteratively solve the two subproblems. This paper includes several algorithmic contributions related to 

addressing the C2C-RP operational problem, delineated in Section 2 relative to the existing literature and 

described in Section 4.  

We use the POLARIS agent-based transportation systems simulation model to test the proposed 

decision policy for the C2C-RP problem and to compare the four MOD service variants. The computational 

results illustrate that the proposed decision policy is both operationally effective and scalable. The most 

computationally demanding components of the decision policy and solution algorithm can easily be 

parallelized to further reduce run time.  

The computational results also indicate that ride-pooling provides significant fleet operational benefits 

over ride-hailing services, in terms of VKT per request served, while only slightly increasing traveler 

request-to-destination times. The benefits for C2C services compared to D2D services are relatively 

smaller, with improvements in VKT per request coming at a large increase in traveler request-to-destination 

time. Moreover, combining ride-pooling and C2C service appears to provide additive benefits, compared 

to D2D-RH.   

Additional computational experiments indicate that increasing the maximum customer walking range 

does not provide significant additional benefits in terms of VKT per request. Rather it is allowing walking 

legs at all, that provides much of the operational benefit, as allowing some walking can prevent highly 

inefficient PU and DO locations for vehicles.  

Given this is one of only a handful of studies to address the C2C-RP operational problem, there are 

several remaining areas for future research. First, in the proposed decision policy and solution algorithm, 

we chose to avoid making extensive calls to a pathfinding algorithm to determine high-quality estimates of 

travel times between vehicles and requests. However, future research should consider the added operational 

effectiveness benefits and computational costs of employing a pathfinding algorithm. Second, in the current 

study, we do not consider vehicles blocking lanes of traffic or utilizing curb space when picking up and 

dropping off travelers. Future research should consider this possibility, as it may indicate a larger 

operational benefit for C2C services over D2D services. Third, future research should consider 

incorporating predictive models of supply and demand into the fleet operator’s decision policy at each 
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decision epoch. Fourth, while the current study performs extensive computational experiments in 

Bloomington, IL, future research should compare the four MOD services and evaluate the proposed 

decision policies effectiveness in different regions/networks. Preliminary results for Chicago suggest that 

the benefits of C2C-RP relative to D2D services are greater in Chicago, IL than Bloomington IL.  
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Appendix A Solution Methodology 

 

Finding Feasible Request-Vehicle match candidates  

Direction and Vehicle Detour Checks 

The first step in finding feasible vehicle candidates for each new unassigned request 𝑟 involves subjecting 

each vehicle 𝑣 to an elimination process based on direction compatibility and vehicle detour constraints. 

The procedure is described as follows: 

• If 𝑣 is idle and 𝑣 ∉ 𝑉𝑟 then add 𝑣 to 𝑉𝑟 

• If 𝑣 is not idle and has seats available, then add 𝑣 to 𝑉𝑟 if all the following conditions are also met: 

o Directionality check: Check if the angle between the vectors representing the average `future 

path of vehicle 𝑣 and the Euclidean path from the origin to the destination of request 𝑟 is within 

a threshold. The average future path of 𝑣 is formed by creating a unit vector from the current 

vehicle location in the direction of the average coordinates of all future PUDO links that the 

vehicle currently plans to visit (to pick up or drop off passengers), scaled by the total Euclidean 

distance of the remaining tour.  

 

θ = cos−1
𝑟 ⋅ 𝑣⃗

||𝑟||  ||𝑣⃗||
(𝐴1) 

 

Where θ is the angle between the vehicle’s current average Euclidean path and the requests Euclidean 

path, 𝑟 denotes the vector connecting the origin and destination of request 𝑟 and 𝑣⃗ is the vector denoting 

the current average planned path of vehicle 𝑣. Vehicles that are on the final leg of their current tour (i.e., 

the total distance remaining for 𝑣 to complete its current tour is less than a minimum distance, are exempt 

from the directionality check. 

o Vehicle path detour check: This is done to ensure that the candidate vehicle 𝑣 does not detour 

beyond a certain threshold to pick up the new request. This is done based on the relative 

location of the request origin with respect to the vehicle’s current average planned path, found 

by calculating the below parameter: 

 

𝑢 =
𝑥⃗ ⋅ 𝑣⃗ 

||𝑣⃗||2 
(𝐴2) 

 

 

where 𝑥⃗ denotes the vector that starts from the vehicle’s current location and ends at request’s origin, 

and ||𝑣⃗|| denotes the Euclidean length of the vehicle’s current average path vector. The vehicle path detour 

check is done based on the 𝑢 parameter as follows: 

- If 𝑢 <  0, this means that the vehicle 𝑣 needs to travel in a direction opposite to its current 

planned path to PU the new request 𝑟. Vehicle 𝑣 is skipped if 

|𝑢 ⋅ 𝑣𝑥|  + |𝑢 ⋅ 𝑣𝑦|  > 𝑑𝑖𝑠𝑡𝑟𝑒𝑣
𝑚𝑎𝑥 (𝐴3) 
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where 𝑣𝑥 , 𝑣𝑦  denote the x and y components of 𝑣⃗  respectively, and 𝑣𝑒ℎ_𝑟𝑒𝑣_𝑑𝑖𝑠𝑡_𝑡ℎ𝑟𝑒𝑠ℎ denotes the 

maximum distance between the vehicle’s current location and the projection of the request origin onto the 

upstream of vehicle path 𝑣⃗. If the above reverse distance threshold is met, the vehicle 𝑣 is also subjected to 

the next detour constraint. 

- If 𝑢 ≤ 1, then add 𝑣 to 𝑉𝑟 if  

 

||𝑥⃗|| + ||𝑦⃗|| − ||𝑣⃗|| ≤ 𝑑𝑖𝑠𝑡𝑑𝑒𝑡𝑜𝑢𝑟
𝑚𝑎𝑥 (𝐴4) 

 

 

Where 𝑦⃗ denotes the vector connecting the request origin and the end point of the average current 

vehicle path vector 𝑣⃗ , and ||𝑥⃗|| , ||𝑦⃗||  and ||𝑣⃗||  respectively denote the Euclidean distance 

between current vehicle location and request origin, request origin and end point of 𝑣⃗  and 

vehicle’s current average Euclidean path length.  

 

If 𝑢 >  1, vehicle 𝑣 is added to the candidate vehicle list 𝑉𝑟 for request 𝑟, since the request origin 

is in downstream of the vehicle’s current path end. 

 

 

 


